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A B S T R A C T   

Extensive work has been done on the metacognitive capacities of humans, as well as to investigate metacognitive 
processes in nonhuman animals. What we propose here, however, is that there are two very different forms that 
metacognition can take: either model-based (implicating at least a simplified model of the thinker's own mind), 
or model-free (representing some mental state or process in oneself in the absence of any such model). The focus 
of all work on human metacognitive judgments has been on the model-based variety, as have been most attempts 
to discover metacognition in animals. We first review recent studies suggesting that there are no resources shared 
between human metacognitive judgments and the sorts of behavioral tests employed with animals, implying that 
the latter fail to provide evidence of even simplified forms of model-based metacognition. Thereafter the question 
of model-free metacognition in animals is pursued. Negative verdicts are rendered on a pair of possible claims of 
this sort. But two positive answers are defended. One is that epistemic emotions like curiosity and interest, as 
well as the signals involved in failed memory searches, implicate representations whose content is, unknown. The 
other is that decisions to deploy attentional / mental effort (which many animals besides humans can do) depend 
on appraisals of an analog-magnitude signal representing the extent to which executive resources are engaged.   

1. Introduction 

Metacognition is defined in the field as “thinking about thinking” 
(Dunlosky & Metcalfe, 2009; Flavell, 1979; Nelson & Narens, 1990). 
Although this definition as it stands might encompass thoughts about 
the thoughts of others (otherwise known as “mentalizing” or “theory of 
mind”), the term is generally understood as restricted to thoughts about 
one's own thoughts, as well as thoughts about one's own mental states 
and processes more generally. That is how it will be used here, too—at 
least initially. (The definition will be broadened herein to include other 
kinds of representation of one's own mental states, in addition to 
thought-like ones.) Note that both metacognition and mentalizing are 
meta-representational—they involve representations of one's own or 
others' representational states. 

Metacognition is believed to be a vitally important capacity, with 
implications for education, emotional regulation, and self-awareness 
generally (Dunlosky & Metcalfe, 2009; Fleming, 2021; Gross, 2015). It 
has been heavily investigated in humans since Flavell's (1979) ground- 
breaking work, for the most part employing explicitly-expressed (ver
bal or numerical-scale) metacognitive judgments. In a paradigmatic 
explicit task used with humans, for example, participants perform some 

task and then report judgments of their confidence in their performance. 
The closer the correspondence between actual (objectively-measured) 
performance and reported confidence, the better the participant's 
metacognition is said to be. 

Comparative psychologists, too, have sought evidence of meta
cognitive abilities in other creatures, employing designs from which, it is 
alleged, metacognitive awareness can be inferred. There have been two 
main paradigms used in the comparative literature. One has involved 
tests of uncertainty monitoring, in which animals have been shown to 
selectively opt out of difficult test trials without a penalty, or to adap
tively accept or decline a high-stakes gamble on the correctness of their 
performance (Smith, Shields, & Washburn, 2003, Smith, Beran, Redford, 
& Washburn, 2006; Kornell, Son, & Terrace, 2007; Couchman, Cou
tinho, Beran, & Smith, 2010). The other paradigm has been designed to 
show an animal's awareness of its own knowledge or ignorance 
(Hampton, 2001, 2005; Rosati & Santos, 2016). Claims about the extent 
to which performance on these tasks reveal genuine, human-like, met
acognitive ability have been heavily contested, however (Carruthers, 
2011; Carruthers & Williams, 2019; Jozefowiez, Staddon, & Cerutti, 
2009a, 2009b; Le Pelley, 2012). 

We will here propose a three-way division among the mental 
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processes involved in such studies. Some, we suggest, don't involve 
metacognition at all, but are purely first-order in nature, involving in
teractions among mental states, perhaps, but no explicit meta- 
representations of those states. We will argue, in particular, that 
nonverbal uncertainty-monitoring paradigms fall into this category, 
whether employed with humans or animals. But then there are two 
separate kinds of process that do genuinely involve self-directed meta- 
representations, we will suggest. One is “model-based” metacognition, 
in which the representations in question form components of an orga
nized theory-like structure of such representations, of the kind investi
gated and described in classic studies of human metacognition. The 
other is “model-free,” in which singular signals with meta- 
representational contents guide some down-stream first-order process 
or decision in the absence of anything remotely resembling a theory of 
one's own mind, and without being embedded among a set of concept- 
like representations of one's own mental states or processes.1 We will 
suggest that some forms of model-free metacognition are present in 
other animals, but that evidence of model-based metacognition is 
currently lacking. 

The language of “model-based” versus “model-free” metacognition is 
introduced by analogy with model-based versus model-free learning and 
decision making (Dayan & Berridge, 2014; Dickinson & Balleine, 1994, 
2002; Gläscher, Daw, Dayan, & O'Doherty, 2010). In model-based de
cision making a representation of the causal structure of the environ
ment gets built, and actions are selected by searching through and 
evaluating the options permitted by the model. In model-free decision 
making, in contrast, actions acquire a sort of “cached value” through 
evaluative learning, and are selected automatically and independently 
of changes in the causal structure of the environment. In model-based 
metacognition, likewise, there is some sort of causal model of aspects 
of one's own mind that is used to guide metacognitive interventions, 
whereas model-free metacognition would operate automatically and 
without needing guidance from any such set of representations. 

The differences between models and theories have been extensively 
discussed by philosophers of science (Giere, 1988; Godfrey-Smith, 2006; 
Nersessian, 2002). Models are often thought to employ structural or 
map-like representations whereas theories are framed in terms of causal 
generalizations (Butlin, 2021). Such differences practically disappear 
when the theories in question are implicit ones, however, with gener
alizations being replaced by associative connections or inference rules 
linking explicit representations (Gopnik & Glymour, 2002). For our 
purposes, what matters more is that both models and theories are always 
understood to be structured entities, comprising multiple nodes or 
concept-like representations, together with the connections between 
them. 

Model-free forms of explicit metacognition, in contrast, would 
comprise lone representational signals (whether concept-like or analog- 
magnitude) that have mental states of the self among their truth- 

conditions or correctness-conditions.2 These signals would serve to 
guide some down-stream cognitive process independently of any other 
metacognitive representation (and so independently of any meta
cognitive model). The two cases that will concern us in due course are 
stand-alone metacognitive belief-like representations with the content, 
[that is] unknown, which serve to drive curiosity and interest; and met
acognitive analog-magnitude signals representing degrees of executive- 
system engagement, whose appraisal produces feelings of cognitive 
effort. 

Before proceeding further, it may be helpful to pause briefly to 
explain how the terms “implicit” and “explicit” are being used 
throughout. (See Table 1 for summary definitions of a longer list of terms 
that may be unfamiliar to some readers.) By explicit representation and 
meta-representation, we do not mean (meta-)representations that are 
conscious. (While the explicit / implicit contrast is sometimes intended 
to line up with the conscious / unconscious one, that is not how it will be 
employed here.) Rather, we mean that they involve some form of (meta- 
)representational symbolic structure or signal, as opposed to being built 
tacitly into the processing rules or procedures employed. Relatedly, an 
explicit task is one whose output measure is an explicit representation of 
some sort (e.g. verbal or numerical-scale), whereas an implicit task is 
one whose output measure is not a representation (but rather, e.g., a 
choice among options, or a response-time). Note that an implicit task 
may nevertheless be enabled and explained by explicit meta- 
representations (that is to say, by explicit metacognition, whether 
model-based or model-free). Whether or not, and when, that is so is the 
topic of the present article. 

Likewise, by an explicit theory or model, we mean one whose gen
eralizations are explicitly represented in symbolic structures. To illus
trate, the information that seeing leads to knowing is explicitly 
represented by the mentalizing system (albeit unconsciously) if the 
inference from, “John sees that P" to, “John knows that P" is mediated by 
consulting the major premise, “Seeing leads to knowing.” In contrast, the 
information is implicitly represented if “John sees that P" leads directly to 
“John knows that P" through a built-in domain-specific inference rule 
having the form: “X sees that P → X knows that P.” Notice that seeing and 
knowing, in contrast, are explicitly represented either way, by the 
concepts SEE and KNOW respectively. So an implicit theory can neverthe
less govern explicit representations. 

Some in the field have sought to characterize forms of metacognition 
that are wholly implicit. This is so-called procedural metacognition 
(Dokic, 2012; Proust, 2014). This view postulates no symbols or explicit 
signals with meta-representational contents. Rather, a cognitive process 
that monitors and modulates the outputs of another gets described as 
procedurally metacognitive, even if it fails to rely on any model-based, 
or theory-like, understanding of the self, and even if no meta- 
representations of mental states or processes are involved at all. Still 
the procedures in question are said to qualify as metacognitive in nature, 
because they function to modulate and control ongoing cognitive 
activity. 

This use of the term “metacognition” comes too cheap to be worth 
the name, however (Carruthers, 2017). For example, using this defini
tion, the operations of the bottom-up attentional salience system (Cor
betta, Patel, & Shulman, 2008) would qualify as implicitly 
metacognitive, because of its role in monitoring the significance of un
attended (unconscious) representations and in modulating the direction 
of top-down attention, thereby influencing the contents of working 
memory. Yet, no attention researcher has ever claimed that such a 
bottom-up system is meta-representational; nor does it need to be so, in 

1 We use the phrase “concept-like,” here, because some philosophers object to 
ascribing concepts to animals at all. This is on the grounds that the states of 
animals fail to satisfy the “Generality Constraint” on concept-possession (Ber
múdez, 2003; Camp, 2004; Evans, 1982). (The Generality Constraint maintains 
that if a creature is capable of employing any concepts at all, then it must be 
capable of freely recombining any of the concepts that is has with any of its 
other concepts of appropriate adicity. So if it has concepts F and G, and singular 
concepts a and b, then it must be capable of thinking each of the permissible 
combinations: Fa, Fb, Ga, and Gb.) While this view is arguably not defensible 
(Carruthers, 2009a), that debate is not relevant here. No substantive questions 
are begged by us opting to speak in terms of concept-like and thought-like states 
in animals instead. 

2 Beliefs and belief-like states typically have truth-conditions; in contrast, 
low-level perceptual states and analog-magnitude representations generally 
have correctness-conditions (Beck, 2018). Representations of approximate 
numerosity, for example, can be more or less accurate, without being categor
ically true or false. See the summary definitions in Table 1. 
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order to perform its role in guiding attention. 
Our topic, in contrast, is explicit (symbolically represented) meta- 

representational forms of metacognition—that is, forms of metacogni
tion that involve symbolic signals or structures of some sort with self- 
directed meta-representational contents. In effect, our topic is 
whether, and when, there are explicit representational signals in the 
mind that have some of the mental states or processes of the agent 
among their truth-conditions or correctness-conditions—that is to say, 
among the represented contents of those signals—and whether those 
signals are model-free or model-based. More specifically, our question is 
whether there are any explicit metacognitive signals that are not part of 
a flexible network of such signals, but rather perform their role singly. 
Such signals would be designed to do their work in a model-free manner, 
and are likely to be of ancient provenance. 

How can these distinctions be tested for empirically? Sections 2 and 
3 will illustrate one way in which the presence or absence of model- 
based metacognition can be tested for in nonverbal creatures. (Stan
dard tests of metacognition among humans using verbal reports, 

numerical-scale judgments, and other communicative measures are 
obviously tests of model-based metacognition. Moreover, as we will see 
in Section 2, they have always been understood as such.) Then Sections 4 
and 5 will examine two possible instances of model-free metacognition, 
rendering a negative verdict in each case. This will depend on our un
derstanding of the detailed computational processes underlying them, 
and their contents. But then Section 6 will argue that curiosity and other 
forms of search behavior motivated by ignorance or memory failure do 
genuinely demonstrate the presence of model-free metacognition. Sec
tion 7 will make a similar argument for some of the signals underlying 
decisions to deploy cognitive effort in executively demanding tasks. 
Finally, Section 8 will conclude and look ahead to potential empirical 
testing. 

Before embarking on those discussions, however, it is worth asking 
how model-based metacognition can be distinguished from model-free 
metacognition when the models in question are implicit ones. For it 
might be said that any meta-representational signal will be embedded in 
computations involving other representations of some sort. And then the 
question is why those doesn't count as an implicit model of the domain. 
We stressed above, however, that model-based processes always 
comprise multiple explicit representations, even when the model itself is 
implicit in a set of associations or inference-rules linking them together. 
And model-based metacognition, in particular, must then involve mul
tiple types of meta-representational signal, rather than just one. Model- 
free metacognition, in contrast, would involve processing over just a 
single such signal, and the representations that interact with or are 
caused by that signal will be first-order ones. For example, if it is signals 
with the content, unknown, that issue in curiosity, then they will activate 
(more-or-less strongly) non-metacognitive motor plans for such things 
as approaching closer, sniffing the target object, and so on. 

2. Model-based metacognition in humans and other animals 

For the most part psychologists who study human metacognition 
have focused on the determinants and accuracy of a variety of explicitly- 
expressed metacognitive judgments, indicated verbally or on a numer
ical scale of some sort (Dunlosky & Metcalfe, 2009). These include 
judgments of learning and ease of learning, judgments of confidence, 
expressions of feeling-of-knowing and tip-of-the-tongue states, and 
judgments about the sources of one's own knowledge. 

Thus understood, metacognitive judgments are always meta-repre
sentational—they involve explicit representations of mental states or 
processes in oneself. But they also rely on an implicit model or “theory” 
of the operations of one's own mind. According to the standard theo
retical approach to classifying and characterizing metacognitive pro
cesses in humans, there is a meta-level that monitors, represents, and 
controls the processes within object-level cognitive systems; and it has 
always been an important aspect of such accounts that the meta-level 
contains a meta-model of the object-level (Nelson & Narens, 1990, 
Fig. 1, and p.126, Principle 2: “The meta-level contains a dynamic model 
… of the object-level”). It is the meta-model that is used to guide in
terventions to alter the course of one's own cognitive processes—to 
improve one's learning, say, or when deciding how much reliance to 
place on a previous judgment. So the kinds of human metacognition 
standardly investigated by psychologists can be described as model- 
based. 

Many in the field have thought that the implicit model of one's own 
mind that guides metacognitive control processes is the same as, or is an 
extension of, the implicit model or “theory” that guides our predictions 
and explanations of the mental states and behavior of other people 
(Carruthers, 2009b, 2011; Frith & Happé, 1999; Gopnik, 1993; Perner & 
Ruffman, 1995; Wellman, Cross, & Watson, 2001; Williams & Happé, 
2009). Those espousing such a view have generally held that human 
mentalizing abilities have priority over metacognitive ones, in both 
phylogeny and ontogeny. The former claim is grounded in theories that 
emphasize the importance of meta-representation for “Machiavellian 

Table 1 
Terms employed in this article.  

Analog-magnitude 
representation 

Representation of a quantity or magnitude by means of a 
continuous (as opposed to discrete) representational 
vehicle. Commonly employed in perceptual systems, but 
also in representations of approximate number etc. 

Competitive accumulator Neural representations that build their activity over 
time in mutual competition with others 

Conceptual 
representation 

An explicit signal or symbol that categorically picks out 
some component or aspect of a domain. When centrally 
available, concepts are the building blocks of thought 

Correctness condition The condition under which an analog-magnitude or 
nonconceptual representation is accurate or correct. 
This is generally a matter of degree rather than all-or- 
nothing 

Explicit mental 
representation 

A neural signal or symbolic structure that has, or 
contributes to, the truth-condition or correctness- 
condition of a mental state 

Explicit task Task whose behavioral output measure is an explicit (e. 
g. verbal or numerical-scale) representation 

Implicit mental 
representation 

A mental process or inferential disposition that 
contributes to the truth-condition or correctness- 
condition of a mental state, but does so without explicit 
representation 

Implicit task Task whose behavioral output measure is not an explicit 
representation 

Mentalizing The process of attributing mental states to other 
creatures (and also, on some views, to oneself). Often 
called “theory of mind” 

Metacognition The process of attributing mental states to oneself, or 
representing mental processes in oneself (whether 
conceptually or non-conceptually) 

Meta-representation Any representation that represents another 
representation, whether in language or in the mind. 
Mentalizing and metacognition both traffic in meta- 
representations 

Model-based A process that operates via a structured model or theory 
of a domain, always containing more than a single 
component. One signature of a model-based process is 
flexibility in the face of changes in the domain 
represented. 

Model-free A process is model-free when it is not model-based 
(generally utilizing just a single representational signal). 
It operates inflexibly, and is not sensitive to changes in 
the structure of the domain represented 

Nonconceptual 
representation 

A nonconceptual representation is one that does not 
“chunk” or categorize the domain represented. 
Generally an analog-magnitude representation 

Procedural 
metacognition 

A mental process or procedure that adaptively alters 
one's own mind in some way, but without employing 
any meta-representations 

Truth condition The condition under which an assertion or thought is 
true or correct. Truth is generally all-or-nothing, 
although also allowing for borderline / indeterminate 
cases  
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intelligence” and social coordination more generally (Byrne & Whiten, 
1988; Seed & Tomasello, 2010; Whiten & Byrne, 1997). The latter claim 
receives some support from evidence that capacities to represent the 
mental states of other agents are present in human infancy, even among 
infants as young as six months of age (Baillargeon, Scott, & Bian, 2016; 
Hyde, Simon, Ting, & Nokolaeva, 2018; Scott & Baillargeon, 2017; 
Southgate & Vernetti, 2014),3 whereas there is no evidence of meta
cognitive capacities in the first few years of life. 

Alternatively, some have claimed that awareness of one's own mental 
states is more basic, with capacities for attributing mentality to other 
agents depending on metacognition together with simulative and 
imaginative abilities (Gallese & Goldman, 1998; Goldman, 2006). Such 
a view would be supported by finding model-based metacognitive 
abilities in creatures that are incapable of equivalent forms of mental
izing (at least, if the reports of such findings were to hold up; see Section 
3).4 

Those who study metacognitive processes in animals often cite the 
Nelson & Narens model with approval (e.g., Smith et al., 2003, Smith 
et al., 2006; Couchman et al., 2010), so one can assume that when the 
animals in question are claimed to have metacognitive capacities, it is 
generally some version of such a model-based architecture that they are 
thought to possess.5 It need not be part of the view, of course, that the 
mind-model in question is anything like as rich or as structured as the 
human mentalizing system. But if the metacognitive abilities attributed 
to these animals are to support claims of nascent self-awareness in these 
creatures (Couchman, Coutinho, Beran, & Smith, 2009), or to warrant 
titles such as, “Rhesus monkeys know when they remember” (Hampton, 
2001), then they must implicate a mind-model of some sort. Moreover, it 
is often the case that positive findings with nonhuman animals are 
described as evidence of early forms of the kinds of metacognition found 
in humans (e.g., Rosati & Santos, 2016). In contrast, Section 3 will re
view recent data from two sets of experiments suggesting that there is 
little or nothing in common between many of the sorts of behavioral 
“metacognitive” tasks employed with animals and the explicitly- 
expressed judgments investigated in human metacognition research. 

3. Testing the tasks used to measure model-based metacognition 
in monkeys 

There have been extensive debates about the phylogenetic origins of 

self-awareness. Some experimenters have claimed, for example, that the 
success of monkeys or other animals in so-called uncertainty-monitoring 
tasks manifests at least a simple form of metacognitive awareness of 
their own mental states—either as such, or in a similar enough manner 
that the representations in question are preadapted to become compo
nents of full-blown self-awareness in humans (Smith et al., 2003, Smith, 
Couchman, & Beran, 2014; Kornell et al., 2007; Couchman et al., 2009, 
2010). In all such tasks the animals have to make primary discrimination 
of some sort, of varying difficulty. But in some paradigms the animals 
are given the opportunity to opt out of trials where they are uncertain, 
moving on to the next trial without reward or penalty (Smith et al., 
2003). Another paradigm requires the animal to take either a high- 
stakes or low-stakes gamble on the correctness of its initial choice 
(Kornell et al., 2007). 

We assume then (in light of the discussion in Section 2), that such 
experimenters are claiming to discover at least simple forms of model- 
based metacognition in monkeys. Some critics have charged that the 
findings can be explained away in associative terms (Le Pelley, 2012). 
Others have appealed instead to first-order estimations of risk, or have 
claimed more generally that the epistemic emotions in question (un
certainty, in particular)—and in contrast with the explicit judgments in 
humans that those feelings can ground—are likewise first-order (non- 
metacognitive) in nature (Carruthers, 2017; Ritchie & Carruthers, 
2012). 

If the kinds of uncertainty-monitoring tasks conducted with monkeys 
are genuinely tapping into capacities for model-based metacognition 
(albeit nascent, and simplified in comparison with human forms of 
metacognition) then a number of predictions can be made. These were 
tested in two recent sets of experiments (Nicholson, Williams, Grainger, 
Lind, & Carruthers, 2019, 2021).6 The predictions are as follows. 

First, such tasks should share at least some metacognitive resources 
with equivalent explicit (e.g. verbal) tasks that employ the same mate
rials and same basic structure. In which case, performance in the two 
types of task should be significantly (but of course not completely) 
correlated in humans. 

Second, recall that on either of the relevant accounts, metacognition 
and mentalizing are linked. (It is either the case that model-based 
metacognition involves self-directed mentalizing or else mentalizing is 
grounded in metacognitive self-awareness.) As a result, we should 
expect performance in both explicit and implicit uncertainty-monitoring 
tasks to be correlated with mentalizing abilities in humans.7 

Third, no matter what the direction of the relationship is between 
metacognition and mentalizing, we should predict that a concurrent 
mentalizing task will disrupt both explicit and implicit metacognitive 
tasks in neurotypical people. Of course, if metacognition requires self- 
directed mentalizing, then taking up mentalizing resources through a 
secondary task should disrupt performance in a metacognitive one. But 
even if mentalizing depends instead on a combination of metacognition 
and mental simulation, a concurrent mentalizing task will nevertheless 
require metacognition as well as simulation. Hence concurrent mental
izing should still disrupt both explicit and implicit metacognitive task 
performance. 

Fourth, depending on the direction of the relationship between 
metacognition and mentalizing, we can make predictions regarding the 

3 There are now well over 30 studies that provide evidence of false-belief 
understanding in infants and young children, using a variety of materials and 
methods, and coming out of a number of different labs (Scott & Baillargeon, 
2017). Admittedly, there have recently been some failures to replicate indi
vidual findings (for examples: Dörrenberg, Rakoczy, & Liszkowski, 2018; 
Kammermeier & Paulus, 2018). But Baillargeon et al. (2018) point out the 
methodological weaknesses of many of these attempted replications, while also 
acknowledging that some methods (specifically anticipatory looking) might not 
be reliable. And in the meantime, new studies both replicating and extending 
previous findings continue to be published (Buttelmann & Kovács, 2019; For
gács et al., 2019; Király, Oláh, Csibra, & Kovács, 2018).  

4 There is a third possible view of the relationship between metacognition 
and mentalizing. Nichols and Stich (2003) argue that they are independent of 
one another—sharing no resources, and with the possibility that each can be 
damaged or absent while the other is fully intact. This third view has received 
little empirical support, and will not be considered further in the current work. 
(See Carruthers, 2011, for an extended critique.)  

5 In fact, there is some confusion in the literature on this point. Sometimes 
researchers in the field are focused on establishing that the animals in their 
experiments are relying on more than merely associative processes, claiming, in 
contrast, that their responses are executively controlled (hence being “meta
cognitive” only in the weak sense of being “above” other cognitive processes in 
a hierarchy of control, rather than involving meta-representations). This is then 
purely procedural “metacognition,” of the sort discussed briefly (and rejected as 
not worthy of the name) in Section 1. See Carruthers (2014) for discussion, 
commenting on Smith et al. (2014). 

6 In addition, (alongside the predictions discriminating between meta- 
representational and first-order accounts of the “uncertainty monitoring” 
tasks conducted with monkeys described here), both experiments involved a 
number of pre-registered predictions that were designed to discriminate be
tween the theory that metacognition is self-directed mentalizing, on the one 
hand, and an account of mentalizing as other-simulating metacognition, on the 
other. The results confirmed our prediction that is it the third-person mental
izing system that is at least partially responsible for self-directed metacognition. 

7 Recall that we are setting aside the view that metacognition and mental
izing are independent of one another in humans. See footnote #4. 
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performance of people with autism spectrum disorder (ASD), whose 
mentalizing abilities are compromised.8 

This fourth set of predictions will take a little explaining. 
On the one hand, suppose that metacognition involves self-directed 

mentalizing (as we have previously suggested is the case; Carruthers, 
2009b, 2011; Williams, 2010). In that case, if both explicit and implicit 
uncertainty-monitoring tasks involve model-based metacognition, then 
one would expect performance in both sorts of tasks to correlate with 
mentalizing abilities in humans. This is because both types of task 
require meta-representation of one's own uncertainty. Hence one would 
also expect performance in both kinds of task to be poorer in people with 
ASD, who have well-documented difficulties with mentalizing. 

Then suppose, on the other hand, that metacognitive abilities are 
more basic, and underlie mentalizing ones when combined with ca
pacities for other-directed imagination or simulation, as some have 
suggested (e.g., Goldman, 2006). There are then two possibilities for the 
component that is compromised in ASD (either metacognition or 
imagination—or both, of course, but that would then issue in the same 
set of predictions already outlined above). If what is compromised in 
ASD is the metacognitive component of mentalizing, then again we 
should expect performance in both explicit and implicit metacognitive 
tasks to be diminished in autistic people. (Note, though, that we know of 
no one who has actually suggested that it is the metacognitive compo
nent of mentalizing that is diminished in ASD.) But conversely, if what is 
compromised in ASD is the simulative component of mentalizing (as 
simulation theorists typically claim; Goldman, 2006), then we should 
expect that performance in both explicit and implicit metacognitive 
tasks should be intact in ASD. Hence, either way, if these implicit tasks 
are genuinely metacognitive in nature, then we should expect, either that 
performance in both kinds of task will be compromised in ASD, or that 
performance in both should be intact in ASD. 

The bottom line for the third and fourth predictions: no matter what 
the relative priority between metacognition and mentalizing is, if im
plicit uncertainty-monitoring tasks of the sort conducted with monkeys 
tap into any form of model-based metacognition, then we should expect 
a concurrent mentalizing task to disrupt performance in both the explicit 
and the implicit tasks in neurotypical people. And whatever the relative 
priority of metacognition and mentalizing, we should expect either that 
both explicit and implicit task-performance are intact in ASD, or that 
both should be damaged together. What we should not predict is that 
performance in implicit tasks of the sort conducted with monkeys would 
be intact in autistic people, or among neurotypical people when 
completing the tasks alongside a secondary mentalizing task, whereas 
performance in otherwise-matching explicit ones is deficient and/or 
disrupted. 

Nicholson et al. (2019, 2021) tested all of these predictions using two 
of the types of uncertainty-monitoring task that have been employed 
with monkeys. But they had human adults and children perform the 
tasks both implicitly (making a behavioral choice depending on their 
degree of certainty, just as the monkeys do) and explicitly (making a 
verbally-expressed judgment of confidence). In some of their experi
ments, the performance of autistic adults or children was compared with 
the performance of matched control participants. In other of their ex
periments, neurotypical participants performed either the implicit or 
explicit version of the task while completing a concurrent metalizing 
task. The performance of these participants in a dual-task condition was 
compared to the performance of participants who completed the 

metacognitive tasks alone in a single-task condition, as well as in a va
riety of other dual-task conditions used as controls. 

In both sets of experiments, participants first had to make perceptual 
discriminations of varying difficulty (this was the object-level task); and 
in both cases, in the explicit-judgment condition, participants recorded 
their judgment of confidence once they had done so. But Nicholson et al. 
(2019) used the opt-out method employed by Smith et al. (2003) for the 
implicit condition—participants had the option of skipping the test and 
moving directly to the next trial without gain or loss. Nicholson et al. 
(2021), in contrast, used the implicit gambling method employed with 
monkeys by Kornell et al. (2007). Having made a discrimination, par
ticipants had the option of selecting an abstract “high risk” symbol that 
would give a large payoff if the initial response was correct, but a large 
loss if it was incorrect; or a “low risk” symbol that had small positive or 
negative payoffs. Great care was taken not to signal to participants that 
the implicit tasks could be approached by first making an explicit 
judgment of certainty, and also to insure a matching incentive structure 
for both explicit and implicit tasks. 

The findings from each of these two sets of studies are inconsistent 
with the view that implicit as well as explicit tasks tap into model-based 
forms of metacognition. First, performance in the two types of task was 
uncorrelated, suggesting that cognitive resources are not shared.9 Sec
ond, performance on the explicit tasks, but not the implicit tasks, was 
correlated with mentalizing abilities, suggesting that only the former 
type of task depends on meta-representation. Third, the secondary 
mentalizing task selectively interfered with explicit-task performance, 
while leaving intact performance in tasks of the sort conducted with 
monkeys.10 And fourth, performance was impaired among ASD partici
pants in the explicit verbal task, but not in the implicit task.11 

The evidence suggests, then, that the kinds of implicit uncertainty- 
monitoring tasks conducted with nonhuman animals have nothing in 
common with the forms of explicit (often verbal) metacognitive tasks 
routinely employed with human subjects. This suggests that the implicit 
tasks aren't tapping into model-based metacognition, in the way that 
standard forms of task plainly are. We cannot conclude from this, of 
course, that animals lack all capacity for model-based meta
cognition—nor even that Macaque monkeys do. For there are other 
forms of task that have not been discussed here (Hampton, 2001, 2005; 
Beran et al., 2015; see Carruthers, 2017, and Carruthers & Williams, 
2019, for discussion and critique). But even if this strong conclusion 
were accepted, that would leave open that some of the implicit tasks 

8 Mentalizing abilities are not completely lacking in ASD, of course; and it 
remains controversial how fundamental the mentalizing deficit is within the 
disorder as a whole. But it is well established that mentalizing abilities are 
diminished among people with ASD in comparison with neurotypical controls 
(Yirmiya, Erel, Shaked, & Solomonica-Levi, 1998; Brunsdon & Happé, 2014; 
Schurz, Radua, Aichhorn, Richlan, & Perner, 2014; Jones et al., 2018). This is 
all that we require for our purposes here. 

9 Although this is a null result, it is one that we specifically predicted. 
Moreover, we subsequently conducted a Bayesian analysis of the data from 
Nicholson et al. (2019) (n = 43 in each reanalysis). This enables one to test 
whether the data provide positive evidence for the lack of correlation. Our 
finding has a BF10 of 0.258, which means that the data are 3.88 times more 
likely to support the null hypothesis than the alternative hypothesis. Likewise, 
reanalysis of the data using Bayesian techniques confirmed that the association 
between explicitly-expressed metacognitive accuracy and mentalizing task 
performance was not only statistically significant (r = 0.38, p = .01), but 
associated with a BF10 of 4.28. In contrast, the association between nonverbal 
task performance and mentalizing was non-significant (r = 0.12, p = .43) and 
associated with a BF10 of 0.22. In other words, the data were 4.28 times more 
likely to support the alternative than the null when it came to the relation 
between mentalizing and explicit metacognition, but 4.54 times more likely to 
support the null than the alternative when it came to the relation between 
mentalizing and adaptive opt-out behavior.  
10 Importantly, selective interference of the concurrent mentalizing task on the 

verbal metacognitive task was not merely because the two tasks shared lan
guage demands; Nicholson et al. (2021) employed a number of other verbal 
secondary tasks that did not tap mentalizing and none impaired verbal meta
cognitive performance. 
11 Likewise, the participants with ASD were matched closely to control par

ticipants for age and verbal ability, so selectively impaired performance on the 
verbal metacognitive task was not merely because of the language demands of 
the task. 
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employed with animals might manifest model-free forms of metacogni
tion. We will return to this suggestion in Section 5 (with respect to un
certainty monitoring, but arguing for a negative conclusion) and again 
in Section 6 (discussing curiosity, memory monitoring, and information 
search, this time arguing for a positive one). Before that, in Section 4, we 
consider the one alleged instance of model-free metacognition that has 
hitherto been defended in print. This will provide us with a template for 
our investigation going forward. 

4. Are error-signals metacognitive? 

A claim of this sort was first proposed by Shea (2014), who argues 
that the error-signals involved in affective / reward-based learning are 
meta-representational. This is on the grounds that they represent the 
difference between an expected and an experienced reward. Note that 
affective learning involving such signals is extremely widespread in the 
animal kingdom, and is found even among snails (Kobayashi et al., 
1998) and ants (Cammaerts, 2004), as well as among all birds and 
mammals. Yet no one would want to claim that ants and snails exhibit 
nascent forms of self-awareness as a result. Nor, we suggest, would 
anyone ever publish a paper with a title like, “Ants sometimes know that 
their expectations of value aren't met.”12 

Shea (2014) argues at length that reward-prediction error signals are 
nonconceptual (and model-free, although he doesn't use the term) forms 
of explicit metacognition. They represent the difference between a 
predicted and an experienced reward, and thereby serve to update the 
agent's representation of the reward-value of the entity or action in 
question. But these error signals are mostly buried deep in subcortical 
regions of the brain, and are common to all creatures capable of eval
uative learning, including many invertebrates. No one would think of 
them as involving a nascent form of self-awareness. Nevertheless, in 
Shea's telling, they are meta-representational in content, representing 
the magnitude of the difference between a predicted and an experienced 
reward. 

One might think that even the language used by theorists in the 
field—error signal—suggests a meta-representational content, implying 
that what is signaled is that a representation (the content of a prediction) 
is erroneous or mistaken. It is not obvious that the term employed is 
anything more than a theorist's external gloss, however. We as theorists 
can see, of course, that an expectation has been formed and then dis
confirmed—that the expectation was erroneous. But it doesn't follow 
from this that the content of the error signal itself represents that a 
representation is mistaken. Moreover, the standard way of stating the 
content of the error signal—that it represents the difference between an 
expected value and an experienced value—admits of two different 
readings, corresponding to differences in the scope of “represents.” It 
can either mean (as Shea suggests): “The error signal represents: [the 
difference between an expected value m and an experienced value n].” 
Or it can mean: “Concerning an expected value m and an experienced 
value n, the error signal represents: [the difference between m and n].” 
On the latter reading, an error signal represents the difference between 
two (represented) values, not two representations of value. 

Since the error signal is caused by a mis-match between an expected 
and an experienced value, it does carry information about each of these 
mental events, of course. But as has long been recognized in philosophy, 
carrying of information is not sufficient for representation (Dretske, 
1986, 1988; Fodor, 1990; Millikan, 1989). The state of perceiving a cat, 

for example, carries information about a pattern of stimulation on the 
retina and patterns of light transmitted through the air, as well as that 
there was a historical cat-mating that led to the existence of that cat. But 
it represents none of those things. And closer to home, many shifts of 
attention carry information that a prior appraisal of the relevance of a 
stimulus or memory has occurred (Corbetta et al., 2008). But of course, 
shifts of attention, although often caused by appraisal processes, don't 
meta-represent those processes. 

In more recent work, Shea (2018) has reviewed and synthesized 
previous theories of representational content, drawing especially on the 
role that appeals to representation play in cognitive science. He argues 
that what makes it the case that something is a representation is that it 
plays a computational role in some cognitive process. And what fixes the 
content (or correctness condition) for a representation from among all 
the information that it carries, is what causally stabilized the role of that 
representation in the computations that it enters into, either through 
natural selection, or through learning, or through its contribution to 
individual survival. The content of the representation is the carried- 
information that we need to appeal to in explaining the role that the 
representation plays in determining the behavior of the organism. We 
assume that this account is at least approximately correct, although the 
details won't matter for our purposes.13 

Now, error-signals are analog-magnitude representations that can be 
either positive or negative, depending on whether the experienced value 
is greater or lesser than expected (and by how much). Let plus-d be a 
measure of how much greater the experienced value n is than the ex
pected value m. Then, given the way in which error-signals like plus- 
d are reliably caused, they do carry the information that an expectation 
of value had previously been formed while a greater value was subse
quently experienced. So they do carry metacognitive information. But 
they also carry information about the difference between the stored 
value for instances of a kind of thing (which might be an initial innate 
setting, or which may have been learned previously from encounters 
with the environment) and the value of the current item. Hence we can 
ask (using Shea's own semantic framework) which of these sorts of in
formation played a causal role in stabilizing the evaluative-learning 
system with the properties and causal role that it now has. 

The answer is obvious once the question is clearly posed. What 
matters from the perspective of evolution is accurately tracking and 
updating the adaptive value of items and actions in the environment. So 
what matters is generating an accurate representation of the magnitude 
of the difference in value between the current item or action and the 
values possessed by members of the kind that the organism (or its an
cestors) has previously encountered. In effect, the correctness condition 
for plus-d concerns how much better this X is than Xs in general. This is a 
first-order representation, lacking any metacognitive content. 

There is more to be said on this topic, of course. Carruthers (2021) 
elaborates on these criticisms of Shea's (2014) interpretation of 

12 Perhaps for this reason, Shea (2014) describes these signals as meta- 
representational rather than metacognitive in nature—maybe he thinks they 
are too far distant from standard forms of metacognition to be described as 
such. Since our interest, in contrast, is in showing that there are two kinds of 
metacognition (model-based and model-free—note that this terminology is 
introduced here for the first time), we propose to present his arguments in our 
own terms. 

13 Note, however, that Shea (2018) actually defends what he calls “varitel 
semantics,” which includes two basic kinds of representing-relation. One is 
informational, with an internal symbol causally co-varying (in the right cir
cumstances and in the right way) with the represented property or thing. The 
other is a form of structural mapping, with the relations among a set of internal 
symbols mirroring the relations among a set of external entities in a map-like 
manner. It is the first of these sorts of representing relation that is relevant 
here. This is because error signals are singular in occurrence, rather than doing 
their work via the relations they stand in to a set of similar signals. Note, too, 
that Shea's (2018) framework is employed here for concreteness, and because it 
is the best-developed recent theory of the role of content-assignments in 
cognitive science. Although Shea's account has a significant teleological flavor 
(“the content is the information carried that explains how the role of the 
symbol-type in question got stabilized”), if we were to switch to an account like 
that provided by Rupert (2018), this would have no impact any of our con
clusions. Rupert emphasizes, instead, the role of the information carried in 
explaining down-stream uses, and ultimately the organism's current behavior. 
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evaluative error-signals in some detail. What matters at this point is that 
we have a template for investigating whether there are forms of model- 
free metacognition in other systems, and underlying other cognitive 
phenomena. What we need to be looking for, in each case, are explicit 
signals of some sort that turn out to have other mental states or processes 
among their correctness conditions when we apply some version of 
Shea's (2018) semantic framework. This is the strategy to be pursued for 
the remainder of our discussion, beginning with a second look at the 
forms of “uncertainty monitoring” behavior displayed by monkeys. 
Although there is good reason to deny that such behavior manifests any 
form of model-based metacognition (as we saw in Section 3), that leaves 
open the possibility that there might be metacognitive signals underly
ing it that are model-free. 

5. Certainty and uncertainty revisited 

Many theorists think that when humans make explicitly-expressed 
metacognitive judgments—about their own learning, memory, accu
racy, certainty, and so on—those judgments are always heuristic-based 
rather than directly introspective (Dunlosky & Metcalfe, 2009; Koriat & 
Goldsmith, 1996).14 Lacking access to memories that are currently 
inaccessible (in feelings of knowing), or lacking access to the processes 
that constitute learning (in judgments of learning), people are forced to 
fall back on indirect heuristic cues. Other theorists think that in the 
domain of certainty and uncertainty, in particular, the probability esti
mates that underlie first-order choice can be made available to inform 
explicit metacognitive judgments as well (Bahrami et al., 2010). We 
allow that this is possible. Since verbal expressions of certainty are 
themselves a form of behavior, it is possible that they should likewise be 
influenced by the probability judgments that underly choice behavior. 
But we are doubtful. For the data reviewed in Section 3 found no overlap 
between implicit tasks—which we interpret as probability-based—and 
explicit metacognitive judgments. Moreover, even if probability esti
mates could inform explicit forms of metacognition, this would not show 
that implicit tasks are themselves metacognitive, of course (in either a 
model-based or a model-free sense). 

It seems that when humans make explicit (verbal) judgments of 
certainty or uncertainty there are a number of heuristic cues that in
fluence them. One is reaction-time (Kiani, Corthell, & Shadlen, 2014). If 
one is slower than normal to reach a decision (about which of two lines is 
longer, for example), then that is an indication that one is uncertain of 
the correct answer. Thus interventions that artificially inflate reaction- 
times without impacting accuracy lead to lower confidence judgments. 
Another cue that people frequently rely on when making explicit judg
ments of certainty is fluency versus disfluency of processing (Rhodes & 
Castel, 2009; Kornell, Rhodes, Castel, & Tauber, 2011). Fluent pro
cessing produces positive affect, and disfluent processing is negative 
(Carr, Rotteveel, & Winkielman, 2016; Casasanto & Chrysikou, 2011). 
Roughly speaking the heuristic is: if making a first-order judgment 
makes you feel bad, then say you are uncertain of its correctness. Hence 
manipulations that impact fluency without altering accuracy (like 
increasing or decreasing the point-size of words to be studied, or using 
familiar rather than unfamiliar materials in a reasoning task) increases 
or decreases people's confidence (Ackerman & Thompson, 2017). 

It seems that people will say that a perceptual judgment they have 
just made was an easy one, and likely to be correct, provided they made 
that judgment swiftly, and/or felt good when doing it. Conversely, the 
cues people use when reporting that a judgment is likely to be incorrect 
(because hard) are that it took a while for them to reach a decision and/ 
or they felt bad while doing it. The first of these heuristic cues (reaction 

time) is not in any sense meta-representational. Representations of 
reaction-times are first-order analog-magnitude representations of the 
temporal intervals between stimulus presentations and actions (Odic 
et al., 2016). As we will see in Section 7, in contrast, there is some reason 
to think that signals of cognitive effort of the sort involved in disfluent 
processing are (at least in other contexts) model-free metacognitive 
ones. So it appears that when humans make explicit (model-based) 
judgments of certainty their judgments may depend in part on meta
cognitive signals (signals that represent executive-system engagement). 
It is another matter, however, to claim that these same signals underlie 
the performance of non-human animals in uncertainty tasks (as well as 
humans in implicit versions of the same tasks). Indeed, if they did, it 
would be puzzling that there should be no overlap in performance be
tween explicit and implicit versions of the same tasks, as we saw in 
Section 3. Moreover, as we will see shortly, performance in implicit 
uncertainty tasks seems best explained in purely first-order (non-meta
cognitive) terms. It thus turns out that it is one thing to use one's un
certainty in an on-line manner, and quite another thing to make a 
heuristic-based judgment about one's uncertainty. 

Investigations and formal modeling of perceptual uncertainty in 
humans (using the sorts of materials that might be employed with 
nonhuman animals, such as judging which of two lines is longer) have 
issued in a debate between those who think that confidence-formation is 
inherent in the decision process itself (van den Berg, Anandalingam, 
et al. (2016); Khalvati, Kiani, & Rao, 2021), and those who find that it 
involves an additional second stage of processing that is second-order or 
hierarchical in nature (Fleming & Daw, 2017; Maniscalco & Lau, 2016). 
We note, however, that the latter set of studies employ explicit judg
ments of confidence, whereas the former do not. This maps nicely onto 
our suggestion that explicit metacognitive judgments express model- 
based metacognition, whereas implicit tasks of the sort discussed in 
Section 3 may not be metacognitive at all. So different computational 
models may be required to explain the data because the kinds of pro
cessing underlying the two sorts of task are distinct. That is what we will 
suggest here. 

Only a few studies have not only used stimuli, but also response 
measures, of a sort that could be employed with animals.15 But van den 
Berg, Anandalingam, et al. (2016) used a procedure with adult humans 
very much like the gambling task employed with monkeys by Kornell 
et al. (2007) and with humans by Nicholson et al. (2021), except that 
confidence was measured at the same time as the primary discrimination 
judgment. Participants judged the direction of motion of a random dot 
stimulus on each trial, indicating whether the dominant motion was 
leftwards or rightwards. They made their choice by moving a cursor to 
one of four positions on the screen, using a joystick beneath the table. 
The two left-most positions indicated leftward motion, and the two 
right-most positions indicated rightward motion. But the upper and 
lower positions on each side came with different payoffs in terms of 

14 Note that the term “heuristic” here is to be understood broadly, to contrast 
just with direct or introspective access to the mental process in question. It is 
not intended to exclude views that model people's use of heuristic cues in terms 
of boundedly rational algorithms, or within a Bayesian framework. 

15 In addition to the studies described below, Miyamoto et al. (2021) recently 
employed an implicit task with humans of a sort that might also be conducted 
with monkeys, claiming to find evidence of metacognition. Participants had to 
choose on each trial between two stimuli. One was a random dot motion 
stimulus, which if chosen would lead to a second stimulus with the same pro
portions of directed motion, where they would be required to judge the di
rection (for a fixed maximum reward if correct). The alternative stimulus just 
contained a number of dots in coherent motion, which indicated a likelihood of 
reward in proportion to the number of dots it contained. The authors interpret 
their task as contrasting metacognitive judgments with judgments of worldly 
probability. We are doubtful. Rather, at the initial choice stage participants had 
to make a decision between two probabilities: the probability of leftward mo
tion (say) in the random dot motion stimulus versus the probability of reward in 
the fixed-motion case (estimated on the basis of numerosity). It is one thing to 
make a first-order judgment of probability, and quite another to make a met
acognitive judgment of certainty. Unfortunately, these are often conflated in the 
literature. 

P. Carruthers and D.M. Williams                                                                                                                                                                                                            



Cognition 225 (2022) 105117

8

points won or lost. The upper position was high-risk, giving a 2-point 
gain for a correct choice, but a 3-point loss for an incorrect one; the 
lower position was low-risk, with a 1-point gain or a 1-point loss. 
(Participants saw a running tally of their point scores throughout.) In 
effect, then, the upper positions expressed high confidence, but were not 
described to participants in these terms, and no explicit judgment of 
confidence needed to be made. 

This setup enabled van den Berg, Anandalingam, et al. (2016) to 
collect data on accuracy, reaction times, confidence, and also changes of 
mind about the correct choice and/or about confidence. This is because 
the movement of the joystick could be precisely tracked, and on some 
trials participants started out toward one location (high-confidence 
about leftward motion, say) but switched mid-movement to end up at 
another (e.g. low-confidence about leftward motion). Participants were 
highly trained (just as monkeys in such experiments always are), and 
they completed over 9000 trials in total. The experimenters were then 
able to build a robust theoretical model capable of simultaneously 
explaining all of the parameters in the resulting data. 

Like many others in cognitive science, van den Berg and colleagues 
assume that decisions are grounded in accumulating neural activity 
(which can be thought of as accumulating evidence, in this case evidence 
of direction of motion).16 Accumulating activity in each of two neural 
populations (representing leftward motion and rightward motion 
respectively) takes a fluctuating “walk” toward a criterion set by the 
participants themselves in light of a speed / accuracy trade-off. It is 
assumed that evidence begins to accumulate in noisy fashion from a few 
milliseconds following stimulus onset until the decision-criterion is 
reached, with confidence-levels fixed by the extent of the difference 
between the two sets of signals (leftward versus rightward), together 
with reaction-time. Importantly, although van den Berg, Anandalingam, 
et al. (2016) arranged for the stimulus to disappear as soon as the 
joystick began moving following a decision, they assume that evidence 
continues to accumulate from information that has already entered the 
system but has not yet been processed. This continuing activity forms 
the basis for changes of mind about either the direction of motion or 
confidence. And it offers at least a partial explanation for why confi
dence and performance are less than perfectly correlated. 

Note that the only representations that need to be appealed to in this 
account are first-order, world-directed, ones. Nothing meta- 
representational is required. In fact, it is the very same type of evi
dence that is used to drive initial decisions that also gets used to form the 
basis for high-risk or low-risk choices (confidence). On the one hand, 
there are graded (analog-magnitude) representations of leftward motion 
and rightward motion; the first of these to reach criterion determines the 
basic choice. But there is also (according to the authors' model) a rep
resentation of the difference in magnitude between these two represen
tations, which (when integrated with reaction-times) is described by the 
authors as representing the odds, or probability, that the chosen direc
tion of motion is, indeed, really the dominant motion. This is used to 
determine confidence (high-risk versus low-risk). And although the 
content of the confidence-representation could be stated in a way that 
makes it seem meta-representational (e.g. “the odds that the 

representation of leftward motion is correct”), in fact all it really repre
sents is the probability that the overall motion in the stimulus is leftward 
(in a case where the larger analog magnitude represents leftward mo
tion). Although this is computed from the difference in strength between 
two signals, it does not represent those signals—so it does not meta- 
represent. There is, as yet, no reason to postulate model-free metacog
nition here.17 

The confidence-signal that issues in a choice of the high-risk or low- 
risk option does carry information about the relative rate of gain in two 
analog-magnitude representations, of course, representing leftward- 
motion and rightward-motion respectively. But we should again apply 
Shea's (2018) semantic framework to figure out the correctness condi
tion for that signal. In order to do so, we need a better sense of the role 
that the signal plays in normal cognition. van den Berg, Zylberberg, 
Kiani, Shadlen, and Wolpert (2016) are able to demonstrate how it gets 
used in a sequence of decisions, for example, all of which must be correct 
for the intended outcome to be achieved and rewarded, but in the 
absence of feedback until after the final choice. Participants rely on the 
confidence-signal accompanying the first decision to alter the criterion- 
level (and hence their reaction time) for the second in a two-decision 
sequence. This is adaptive because it is worth investing extra time to 
get the second decision correct if you are confident of the first one, but 
not otherwise. 

In light of this example, we can now ask what, from among the in
formation carried by the confidence-signal, has stabilized its role in 
sequential choice (among other things, of course—this is just used for 
illustration). Plainly, the answer is that the strength of the confidence- 
signal correlates with the chance of making the first decision 
correctly. That it accurately carries information about the difference in 
strength between two competing signals (representing movement-left 
and movement-right) is of no use in itself. It is only because the 
magnitude of that difference correlates with the extent of the balance of 
evidence, and hence with the probability of having made a correct 
choice, that it is adaptive to modulate one's response to the second de
cision in the series. It is only adaptive to take more time over the second 
decision if the chances of having been correct in the first are high. So, the 
confidence-signal is best understood as a (subjective) representation of 
worldly probability or likelihood. When the choice made is for leftward- 
movement, the content of the confidence-signal says: high probability of 
leftward-movement; or perhaps: high probability of success when 
selecting the leftward-moving response.18 

One notable feature of the account of implicit uncertainty behavior 
offered by van den Berg, Anandalingam, et al. (2016), is its claim that 
the very same drift-diffusion signals underlie both object-level 
responding (e.g. “leftward motion”) and choice between the high-risk 
and low-risk options (that is, uncertainty-based behavior). The former 
signals are, of course, domain-specific ones. They are visual represen
tations of patterns of movement. But Baer, Gill, and Odic (2018) and 

16 Such models are variously described in the literature as “sequential sam
pling with optional stopping,” “drift diffusion,” and “leaky competitive accu
mulator” accounts (Usher & McClelland, 2001; Pleskac & Busermeyer, 2010; 
Forstmann et al., 2016), and can take a variety of forms. Although there are 
some differences of detail among the various approaches, these need not 
concern us here. 

17 Barthelmé and Mamassian (2009), likewise, employ a behavioral task of a 
sort that could be used with animals (in which subjects select on every trial 
which of two stimuli they want to use to take the test), but they model sub
sequent performance using a Bayesian framework. They conclude that confi
dence can be thought of as the difference between two perceptual probabilities 
(probability of the leftward orientation of a Gabor patch minus probability of a 
rightward orientation). Again, probabilities are not meta-representational.  
18 Consistently with this suggestion that uncertainty responding is guided by 

estimations of worldly probability rather than anything metacognitive, Capu
chin monkeys, who had previously been thought to be incapable of uncertainty- 
monitoring, turn out to make adaptive use of the opt-out option when the 
structure of the experiment is changed so that the odds of success when 
choosing randomly become one-in-six rather than one-in-two (Beran, Perdue, 
Church, & Smith, 2016). (Note that Capuchins famously have a try-everything- 
really-fast problem-solving style, whereas Macaques, that have more frequently 
been used as test subjects in binary-choice uncertainty-monitoring studies, are 
more cautious.) 

P. Carruthers and D.M. Williams                                                                                                                                                                                                            



Cognition 225 (2022) 105117

9

Baer and Odic (2019) provide evidence (collected with children aged 3 
to 7) that implicit certainty responding reflects a domain-general ca
pacity, drawing on a common resource across different domains of 
judgment. 

Specifically, Baer and Odic (2019) provide evidence that children's 
analog numerosity judgments develop independently of their capacity to 
respond adaptively to the certainty or uncertainty of such judgments. 
And Baer et al. (2018) demonstrate the same finding across the three 
domains of approximate number, approximate area, and degrees of 
emotionality in a face. Notably, in both studies children were presented 
with tasks that could equally well be used with non-human animals: they 
were presented side-by-side with two comparisons in a given domain and 
asked which one they wanted to choose for the test (to accumulate 
points if they were successful). 

It is not obvious that these two perspectives are really inconsistent, 
however. Suppose it is true, as van den Berg and colleagues would 
suggest, that the same set of analog magnitude signals are employed both 
for object-level judgment (e.g. “that box has a greater number of dots”) 
and for computing the certainty, or likelihood of correctness, attaching 
to that judgment. Still the computations involved are distinct. The 
object-level judgment depends on the accumulating but noisy neural 
signal (representing greater numerosity, say) together with the criterion 
for stopping. Certainty, in contrast, depends on computing the difference 
between two accumulating noisy signals (two signals of approximate 
number, in this case). It may be that this computation manifests a 
domain-general capacity—thereby enabling one to make cross-modal 
comparisons of likelihood—although the object-level judgments 
plainly do not. 

The important point for our purposes, however, is that even if there is 
some tension between the two perspectives, from the fact that 
confidence-based decision making is a domain-general capacity, it 
doesn't begin to follow that it must involve meta-representational sig
nals of any kind. On the contrary, it plausibly just involves the capacity 
to represent likelihoods (e.g. the likelihood that one approximate- 
number is larger than another, or the likelihood that one face is 
happier than another), mapping them to a common (domain-general) 
likelihood-scale where they can be compared and responded to. 

6. Responding to ignorance 

Claims to have discovered a form of model-based metacognition in 
animals have included not just the uncertainty-monitoring studies 
critiqued in Section 3, but also alleged findings of memory-monitoring, 
or meta-memory (Hampton, 2001, 2005), as well as information-search 
paradigms employed with primates (Krachun & Call, 2009; Rosati & 
Santos, 2016) and preverbal infants (Goupil, Romand-Monnier, & 
Kouider, 2016). Those claims, too, have been criticized by Carruthers 
(2017, 2018). But we will argue here that they nevertheless contain an 
important nugget of truth: underlying the capacity to utilize memory 
adaptively (and especially underlying an organism's responses to failed 
searches of memory), are forms of model-free metacognitive signal. And 
the same is true, too, of related capacities for epistemic emotions like 
curiosity and interest, as well as for instrumental information-search. 
We will begin by discussing curiosity, in particular. 

Almost all philosophers and cognitive scientists who have written on 
the topic of curiosity have addressed it in metacognitive terms—as 
involving a desire for knowledge or true belief, or as an intrinsic moti
vation to learn, or something of the sort. (See Foley, 1987; Goldman, 
1999; and Williamson, 2000, among philosophers; and see Litman, 
2005; Gruber, Gelman, & Ranganath, 2014; Blanchard, Hayden, & 
Bromberg-Martin, 2015; and Kidd & Hayden, 2015, among psycholo
gists. Exceptions among philosophers include Whitcomb, 2010, and 
Friedman, 2013, in addition to Carruthers, 2018.) Even Loewenstein's 
(1994) well-known “information gap" theory of curiosity, which sounds 
as if it might not require metacognition, is actually framed in meta
cognitive terms. Curiosity is said to arise from “a discrepancy between 

what one knows and what one wishes to know” (p.93; italics added). 
Carruthers (2018) argues that this widespread view is mistaken. 

Rather, curiosity and interest are both species of questioning attitude. 
They are affective / motivating states that take questions rather than 
propositions as contents. Consider a monkey interested in (and closely 
observing) an on-going fight between two males in the troupe. On the 
standard view, the monkey has a metacognitive desire. The monkey 
wants to know who will win. Carruthers argues, in contrast, that the 
monkey has a desire-like state with a question as its content: who will 
win? On the standard account, the monkey must be supposed to possess 
the concept KNOW (or some rough equivalent). Carruthers' view is that 
this is unnecessary: the only concepts required for curiosity to be 
possible are concepts like WHO [will win], WHAT [that is], WHEN [food will 
come], and WHERE [food is], together with some concepts for kinds of 
action and kinds of thing (like winning and food). 

Why should the questioning-attitude account be preferred to a 
metacognitive one? Primarily because of how widespread epistemic 
emotions are across the animal kingdom. Many animals (including rats 
and even bees) are motivated to explore novel or unrecognized envi
ronments (Cheeseman et al., 2014; Menzel et al., 2005; O'Keefe & 
Dostrovsky, 1971; Panksepp, 1998; Wills, Cacucci, Burgess, & O'Keefe, 
2010). On the standard account they must be wanting to know what is 
around them. The contrasting view is that they are motivated by simple 
questions like, what is around here? Moreover, we know that the states at 
issue (in birds and mammals, at any rate) are at least curiosity-like, 
because individuals in both groups will (like humans) pay a proportion 
of any reward they might receive in a probabilistic reward-schedule just 
to know whether or not a reward is coming (Blanchard et al., 2015; 
Bromberg-Martin & Hikosaka, 2009; Fortes, Vasconcelos, & Machado, 
2016; Gipson, Alessandri, Miller, & Zentall, 2009)—or in order to 
answer the question, whether there will be food. 

Carruthers (2018) argues that a similar story can be told with respect 
to what motivates memory-search. Instead of treating it as motivated by 
a metacognitive desire (wanting to remember), we should understand it in 
terms of first-order questions directed at the animal's own memory 
system. (And to direct a query to one's memory system one doesn't need 
to have any conception of memory, of course; not even a simple 
one—the connection is surely built in, or hard-wired.) Consider a hungry 
food-caching bird, for example. Hunger prompts the question, where 
food is, which when directed toward the bird's own memory of cache 
locations either issues in an answer (food is in that hole in that tree)—in 
which case the bird flies there to retrieve it—or it does not (in which case 
the bird begins foraging-search afresh). 

We assume going forward that these questioning-attitude accounts 
are correct. The contents of epistemic emotions like curiosity and in
terest are first-order questions directed at the environment, and the 
contents of memory searches are first-order questions directed at one's 
own memory. But what of the causes of such states? Epistemic emotions 
like curiosity and interest are caused by ignorance, or lack of knowledge. 
And animals behave differently depending on whether memory searches 
succeed or fail. Carruthers (2018) claims that being caused by ignorance 
is not the same as (meta-)representing ignorance, however. And that 
may well be true, if the kind of meta-representation at issue is the model- 
based variety. We now think, however, that the causes of such states 
may need to be explained in terms of model-free metacognition—that is, 
as involving concept-like signals that represent one's own ignorance in a 
model-free manner. 

We should stress, however, that we are not suggesting that all forms 
of search behavior require (model-free) metacognition. Sometimes 
learning results from a random or semi-random walk through the 
environment. (The initial reconnaissance flights of bees when they first 
emerge from the hive may fall into this category.) And sometimes 
creatures might follow a gradient of information to a known target. For 
example, a male moth that detects the odor of a female faces a problem, 
since odor molecules are often distributed sparsely in turbulent air. 
Moths adopt a search strategy that involves flight across the up-wind 
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environment, computing the likely location of the female from occa
sional odor samples together with background assumptions about odor 
spread given the average wind direction and speed (Vergassola, Viller
maux, & Shraiman, 2007; Voges, Chaffiol, Lucas, & Martinez, 2014). 
Nothing metacognitive is required here. In fact, each putative type of 
model-free metacognition will need to be examined on its own merits, 
and may require testing of alternative computational models of the data. 
Our goal here is just to motivate the question, and to make it seem 
plausible that at least some instances of model-free metacognition are 
real. 

Consider, then, a cat that becomes curious when an unfamiliar me
chanical toy is released and begins to move across the floor of the 
room.19 The cat watches alertly, and may approach the object, perhaps 
sniffing and walking around it, or tapping it with a paw. According to 
the questioning-attitude view, the cat is motivated by the question, what 
that is. The likely account of how that question is prompted, or caused, 
proceeds as follows. When the object is first seen, neural populations 
representing a number of familiar entities become active, and start to 
compete with one another (in part through mutual inhibition). But at the 
same time neural activity builds, competitively, in a neural population 
that represents, unknown, or unrecognized. This reaches criterion first, 
issuing in the motivation to investigate—executing actions designed by 
evolution and/or previous learning to result in new knowledge. (These 
are actions that have often enough led to questions being answered—the 
question, in this case, being, what that is—thereby being rewarding, and 
reinforcing the actions in question.) 

The suggestion, then, is that curiosity is always motivated by an 
explicit metacognitive signal. But in order for the signal in question to do 
its work, the creature need not possess even the most nascent model of 
the operations of its own mind; indeed, the same account will work just 
as well for bees, or for any creature that initiates question-answering 
behavior when in a position of ignorance. Hence our proposal, then, is 
that curiosity, interest, and related epistemic emotions are grounded in 
model-free forms of metacognition. 

The account just sketched is based on the work of Dufau, Grainger, 
and Ziegler (2012), who offer a theory of the computations underlying 
human performance in a word / non-word task. They utilize a leaky 
competitive accumulator (LCA) model to explain how people swiftly 
categorize a new stimulus as a word (a familiar lexical item) or a non- 
word (an unknown or unrecognized sequence of letters). Neural activ
ity representing word builds up over the course of milliseconds, 
depending on how closely the stimulus matches the features of a familiar 
word. If this activity reaches criterion one responds with “word.” But at 
the same time the “non-word” response is linked to increasing activity in 
another population of neurons, from which activity in the “word” pop
ulation subtracts. If this value reaches criterion level one answers “non- 
word.”20 A number of issues naturally arise from the attempt to deploy 
this sort of account to argue for model-free metacognition, however. 

The first question to ask is why there needs to be an explicit signal 
representing, unknown (underlying curiosity) or, non-word (in the word- 
recognition task), leading one to respond accordingly. Perhaps the un
derlying mechanism in a word / non-word task can just be that evidence 
in favor of “word” builds more or less swiftly, and one answers “non- 
word” if that evidence doesn't reach the “word”-criterion swiftly enough. 

In effect, why can't the decision-criterion for “non-word” just be a 
temporal one? Perhaps the underlying mechanism can operate without 
any explicit signal representing, non-word. And then the mechanism 
underlying curiosity, likewise, can be that activity representing various 
familiar items builds in mutually-competitive fashion, with question- 
answering behavior initiated if none of them reaches criterion swiftly 
enough. 

One answer to this challenge is that neural competition is ubiquitous 
in the brain, at all levels of organization (Mysore & Kothari, 2020). As a 
result, all forms of accumulator / drift diffusion / sequential sampling 
models of neural processing assume competition among options (Usher 
& McClelland, 2001; Pleskac & Busemeyer, 2010; Forstmann, Ratcliff, & 
Wagenmakers, 2016). Indeed, one of the main reasons why mutually- 
inhibitory competitive models have replaced ones that postulate an in
dependent “race” to a decision criterion is that they enable an adaptive 
trade-off between speed and reliability (Teodorescu & Usher, 2013). 
This is because independent neural accumulation is much more influ
enced by noise (fluctuating neural activity), requiring a high decision- 
criterion to insure reliability, but at the cost of speed. So in the 
absence of a separate neural accumulator with the content, unknown, 
decisions to engage or not engage curiosity would likely be either un
reliable or slow. 

In addition, there is continual competition among motor plans as 
well (Cisek & Kalaska, 2010). Consider, then, the behavioral options 
available to the cat in our earlier example. These include stalking, 
leaping onto, biting, and so on, in addition to investigating; and these 
will be in competition with one another too, with the investigate option 
being implemented if it reaches criterion first. Note that the neural ac
tivity representing investigate also carries information about current 
ignorance, operationalized here to mean the failure of any of the object- 
type representations to reach criterion. In which case, even if it were the 
only explicit representation underlying questioning behavior, it should 
nevertheless be thought of as what Millikan (1995) calls a “pushmi- 
pullyu” representation, with a dual motoric / indicative content. And on 
the indicative side it seems that what it represents is: unknown.21 

A second question to ask is why the neural signal underlying curi
osity behavior needs to be assigned the content unknown (a meta- 
representational content), rather than an object-level conjunction of 
negative contents (not a mouse, and not ball, and not a food-bowl, and …). 
One answer appeals to explanatory generality. Consider the word / non- 
word task again. Here, too, one can ask why the signal that issues in a 
non-word response when it reaches criterion should be assigned the 
content, not a word rather than, not “house,” and not “louse,” and not …, 
for all the possible word-representations that have become activated and 
are competing with it. The answer is obvious: these would be different 
each time. Yet the explanation for why one responds “non-word” on all 
the different occasions when one does is surely the same: it is because 
one thinks (represents) that the stimulus is not a word. The same point 
holds in the case of curiosity. Many different sets of potential object- 
representations and event-representations will be active across 
different instances of curiosity; yet one should surely offer the same 
explanation in each case: the animal responds as it does because the item 
or event is unknown to it. 

Moreover, and relatedly, it is only the metacognitive content that 
rationalizes and makes sense of the role of these signals in sustaining 
investigative behavior. Indeed, we can ask (in the spirit of Shea, 2018) 
what stabilized the role of the signals in evolution. The answer, plainly, 
is that it carries the information, unknown, not that it carries the 19 Of course, not every new item or event—nor even every new item or event 

that violates a prior expectation of some sort—will evoke curiosity. There must 
first have been an appraisal of relevance to the animal's goals or values. Indeed, 
it seems that curiosity, like attention (Corbetta et al., 2008), depends on prior 
appraisals of the relevance of a stimulus. For further development of this point, 
as well as of some of the other material contained in this section, see Carruthers 
(2023).  
20 There is related single-neuron work showing that there are neurons in the 

prefrontal cortex of monkeys that fire when a stimulus is absent, as well as 
neurons that fire when it is present (Merten & Nieder, 2012). 

21 Consistent with these suggestions, Ahmadlou et al. (2021) find in a study of 
the neural bases of curiosity-driven behavior in mice that there is a small sub- 
population of neurons in media zona incerta, threshold-crossing activity of 
which drives deep investigative behavior. This region receives input about 
general arousal following simultaneous presentation of two objects, one 
familiar and one not, and from sensory regions. 
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information that the stimulus is not any of the things in a potentially 
open-ended conjunction of possibilities. 

Thirdly, however, we can ask whether the signal that initiates search 
behavior in cases of curiosity or interest needs to have the content, un
known rather than the content, novel or new. Whether or not something is 
new to an organism is a function of previous encounters, and can be 
specified without mentioning anything psychological. And indeed, what 
initiates search behavior when confronted with novelty (often taking the 
form of an orienting response or shift of attention), can be a first-order, 
non-metacognitive, signal. But the same cannot be true of what sustains 
curiosity or interest thereafter. For by that point the object or event is no 
longer new, but can still be unrecognized or unknown. 

Imagine one is strolling through a city woodland, not attending to the 
scenes around one. (One may be listening to a podcast through head
phones.) Nevertheless, even in the absence of focused attention, one's 
visual system will produce a gist representation of the surroundings 
(“inanimate grass, bushes, and trees”). But now the visual system detects 
animate motion in a nearby tree. This issues in an error signal—similar 
to an “oddball” stimulus of the sort used in vision labs, but in this case 
with the content, animate. That will attract attention, and one is now 
consciously aware of the creature. But if the latter fails to be recognized, 
the result may be curiosity and sustained attention. It seems the content 
of the signal that sustains attention must be, unknown rather than, new, if 
only because the animal in question might have been seen multiple 
times before. (“What is that animal I keep seeing in these woods?”) 

Similar points can be made with respect to the signals underlying 
failed memory search. When the hungry bird directs a question at its 
memory with the content, where a food cache is, multiple neural pop
ulations representing potential locations will be evoked into initial ac
tivity, building in mutually-competitive manner to the extent that they 
contain relevant stored memory traces or are associatively activated by 
stored memory traces. But at the same time a neural population repre
senting, no memory or, unknown will also begin building, competing with 
the specific-location representations to reach criterion first. If the signal 
representing, no memory wins the competition, then the bird sets off to 
forage afresh; if one of the location representations wins, on the other 
hand, then the bird sets off toward that spot. 

There are the same general reasons, here—as there was in the case of 
failed recognition—to think that there must be an explicit neural signal 
representing memory failure, one that has lack of memory as its cor
rectness condition. And the same general reasons also favor a meta
cognitive interpretation of the content of the signal, rather than a 
conjunction of negative claims (not in tree A, and not in tree B, and not …) 
which will vary from case to case. (Note that in this case there is simply 
no option corresponding to the proposed content, new, that might be 
thought to initiate curiosity.) Moreover, it is the absence of memory that 
has stabilized the role of the signal in question, adaptively initiating 
novel foraging behavior. 

It is worth noting, however, that there need be nothing meta
cognitive in cases of successful memory retrieval. Suppose that the bird's 
memory-query results in a positive answer: food is in tree A. The bird 
doesn't need to represent this as a memory in order to act on it suc
cessfully. That the representation can now be used to guide a food- 
retrieval action is built into its functional role as a memory. And 
although the signal in question does carry the information that it derives 
from a memory system, it also carries the information that there is food 
stored at the location in question. Plainly, it is the latter type of infor
mation that has stabilized the role of memory in animal behavior. What 
makes the memory-signal correct is not that it derives from the creature's 
own memory (a meta-representational correctness-condition), but 
rather that there really is food at the location represented. This is a first- 
order, world-directed, content. 

Moreover, even if we suppose that animals, too, can rely on the same 
sorts of cues that underlie human feelings-of-knowing to continue 
probing memory, nothing meta-representational need be involved here 
either. Specifically, partial retrieval, or retrieval of related items, will 

encourage people to continue a currently-unsuccessful memory search 
(Koriat, 1993; Koriat & Goldsmith, 1996; Koriat & Levy-Sadot, 2001). 
Suppose that animals rely on the same cues. But we already know that 
evaluative learning will lead creatures to value actions that take them 
closer to a goal. In this case the goal is to answer a question, where food 
is. If partial representations of food locations have led to full answers in 
the past when probing was continued, then the animal will be motivated 
to continue pressing the same question for a while. It doesn't have to feel 
or judge, that is known, in order for this to happen. 

Our discussion so far in this section has assumed some form of 
competitive accumulator account of the processes underlying decision 
making. It might be wondered how the causes of curiosity might look 
from within a predictive-coding framework, however, of the sort that 
has been claimed by some to be ubiquitous at all levels of cognition 
(Clark, 2013, 2016; Friston, 2009, 2010). Although there have been 
some discussions of curiosity within this literature, in some cases the 
focus has been on responding, in the abstract, to curiosity as a possible 
counter-example to the thesis that the goal of all cognitive processes is 
error-minimization (Clark, 2018). And although some work modeling 
curiosity-like behavior has been done in this framework (Friston et al., 
2017; Schwartenbeck et al., 2019), no one has, to the best of our 
knowledge, discussed curiosity following recognition failure, nor done 
the sort of detailed testing-and-modeling using reaction-time data of the 
kind conducted by Dufau et al. (2012). 

On its face, however, it appears that a predictive-coding account of 
how curiosity gets caused in these circumstances would be the inverse of 
the competitive-accumulator one sketched earlier. As information about 
the unknown object is received, initial activity in a suite of predictive 
representations (MOUSE, BALL, FOOD-BOWL, and so on) will be reduced via 
bottom-up error signals. And then if the processes at this level are 
competitive ones, one might predict—from the same general consider
ation of trade-offs between speed and reliability—that competing ac
tivity in an alternative representation (UNKNOWN) would not be reduced 
by error signals, remaining as the only one standing. And it would be this 
that initiates (when deemed relevant enough) curiosity and exploratory 
behavior. 

These considerations do not prove the case conclusively, of course. 
The issue is an empirical one. But error signals, like all other neural 
activity, will build over time in a noisy fluctuating manner. So mutually- 
inhibitory competition among such signals would serve to reduce wait- 
times for a decision while improving reliability, just as it does in accu
mulator models. And that means, in cases where the basic decision is 
between unknown and one or more active possibilities, that it would be 
beneficial to have a separate pairing of prediction and prediction-error 
representations of ignorance to compete with the remaining possibil
ities. In any case, however, the same basic form of experiment to be 
described in Section 8 could be employed as a test here too, provided the 
predictive models used are constructed around competitive, noisily 
fluctuating, levels of error-minimization. 

In conclusion: since forms of curiosity, interest, and search behavior 
in general are extremely widespread in the animal kingdom; and since 
memory for locations, too, is equally widespread (in both cases 
extending to bees and other insects); we therefore have reason to think 
that the metacognitive signals whose existence we have proposed are 
model-free ones. One doesn't need even the simplest of theories of one's 
own mind in order to respond adaptively to failures of recognition and 
failures of memory-search. Yet the mechanisms underlying such re
sponses will include explicit representational signals that contain facts 
about one's own mental states among their correctness conditions. 

7. Mental effort 

Carruthers (2021) argues that a model-free analog-magnitude signal 
representing the extent of executive engagement—or degrees of cogni
tive control—underlies decisions to engage, or not engage executive 
control (as well as affective feelings of mental effort in humans, at least). 
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That argument will be sketched here. 
Controlled cognitive processing is generally experienced as aversive; 

and at its heart are capacities for top-down attentional control (Ship
stead, Lindsey, Marshall, & Engle, 2014; Tsukahara, Harrison, Draheim, 
Martin, & Engle, 2020). Moreover, there is evidence, not only that 
controlled attention is present in many birds and mammals, at least 
(Karten, 2015; Mysore & Knudsen, 2013; Sauce, Wass, Smith, Kwan, & 
Matzel, 2014), but also that it is used in System-2-like forms of multistep 
planning (Gruber et al., 2019; Taylor, Elliffe, Hunt, & Gray, 2010; von 
Bayern, Danel, Auersperg, Mioduszewska, & Kacelnik, 2018). In which 
case many animals besides humans may take decisions to engage or 
disengage from controlled cognitive processing—but presumably rep
resented in a model-free manner, as we argue shortly. 

Decisions to engage control depend on a calculation of the expected 
value of control (Inzlicht, Shenhav, & Olivola, 2018; Shenhav et al., 2017; 
Shenhav, Cohen, & Botvinick, 2016). But it is possible that the decision 
itself need not involve any symbol-involving event that is a decision to 
engage cognitive control. That is to say, there need not be an explicit 
representation of cognitive control at the “decision”-point—not even a 
model-free one. Neural activity representing the different sources of 
information (costs, likelihood, and outcome value) may integrate and 
build in competition with alternatives, either reaching or failing to reach 
criterion. The result can be described as a decision to engage cognitive 
control (or not), but that result need not employ any symbolic structure 
or signal referring to control. When the criterion is met, control is 
engaged. But that this is about engaging cognitive control can be left 
implicit in the procedures involved. 

Now, many animals are known to integrate the costs of physical effort 
into their decision making. They evaluate, not just the value of the end- 
state aimed at and the likelihood of achieving it, but also the energetic 
costs of getting there. And it is now known that rats, in addition to 
humans, will evaluate the costs of mental effort, too, with the evaluative 
networks involved being distinct from those that evaluate physical effort 
(Inzlicht et al., 2018; Winstanley & Floresco, 2016). The tasks that have 
been employed with rats involve a decision between two different task 
options, one requiring effortful focused attention to detect a briefly 
presented flash of light in one of five locations for a larger reward, the 
other only requiring the animal to detect an easily visible longer flash for 
a smaller reward. The animals have to trade-off the size of the reward 
against the attentional effort involved. Furthermore, rats can be condi
tioned to positively evaluate cognitive effort, at least within a particular 
domain or type of task (Hosking, Crocker, & Winstanley, 2016). So, too, 
can humans. Moreover, in humans, at least, evaluative conditioning can 
issue in a sort of learned cognitive industriousness that transfers to 
rather different types of cognitive-control task (Eisenberger, 1992). 
(Transfer of cognitive industriousness has not yet been tested in rats.) 

The negative value attaching to controlled processing isn't fixed, 
then. Evaluative learning can change an animal's appraisal of the 
badness of expending cognitive effort in a given context. And then if a 
given form of cognitive effort is evaluated as bad (or good), it must first 
be represented. For affective systems can only appraise and evaluate 
items that are explicitly represented, as Delton and Sell (2014) point out. 
Indeed, all desires and emotions are about something, and result from 
prior affective valuation (or “appraisal”) of the thing, event, or property 
in question.22 

In many cases this means that concept-like representations are 

involved. If a monkey is to experience alarm at the sight of a snake, then 
it must have a concept-like representation of snakes. It must be capable 
of discriminating snakes from other things, for example, even if it knows 
very little about them. And affective learning, too, generally requires 
concept-like representations of the kinds in question. In order to acquire 
and store a positive or negative valuation of Xs, a creature must be 
capable of representing Xs in some fashion, and of distinguishing them 
from other types of thing. 

What is surely true is that if controlled processing is to be negatively 
(and sometimes positively) evaluated, then it must be represented 
somehow. But it need not be represented conceptually, and certainly not 
in a model-based manner. Provided that the evaluative system receives a 
signal from executive controllers whenever the latter are engaged (and 
with the strength of the signal varying with the extent of that engage
ment), then it can be built into the default settings of the former that it 
should issue in negative affect. But normal processes of evaluative 
learning can change these settings, resulting in executive engagement in 
some contexts being evaluated positively. The signal in question refers 
to controlled processing, but without needing to be embedded in any 
theory-like representation of attention, cognitive control, or any other 
sort of mentality. 

We can apply Shea's (2018) semantic framework to further establish 
the point. The signal received by evaluative systems when controlled 
cognitive processing is engaged carries the information that it has been 
so engaged. Moreover, that it carries that information explains how a 
dual-systems architecture has been stabilized by evolution. For given 
that attention is a limited resource, sustained attention to a thing or task 
carries opportunity costs, and should thus be negatively evaluated by 
default (Kurzban, 2016; Kurzban, Duckworth, Kable, & Myers, 2013). 
Hence it is generally adaptive to find controlled cognitive processing to 
be effortful. And it is because the strength of the signal in question co- 
varies with degrees of executive control that it plays the role that it 
does in computing the expected value of control, and in modulating 
ongoing cognitive processing. 

Why should we think that the signal in question refers to cognitive 
control, however (something mental), rather than the underlying 
physical brain activity? Perhaps what is signaled is just increased ac
tivity in regions of prefrontal cortex, in particular. This suggestion might 
have made sense if the “ego depletion” model of mental effort had been 
correct. On this view, mental effort tracks calorific depletion in the brain 
resulting from frontal engagement (Masicampo & Baumeister, 2008). 
But this account is now thought to be problematic (Kurzban, 2010; 
Hagger et al., 2016; Vadillo, Gold, & Osman, 2016; Inzlicht et al., 2018). 
Instead, it is thought that feelings of mental effort result from the 
opportunity-cost of not directing attentional resources elsewhere 
(Kurzban, 2016). If this is correct, then the best explanation of how the 
role of effort-signals came to be stabilized in human and animal cogni
tion needs to be pitched at the cognitive level; and in consequence, what 
they represent belongs at that level also. 

It might be wondered, however, why explicit signals correlating with 
the extent of one's executive engagement need to be present at all. Why 
can't adaptive use of cognitive-control mechanisms depend on direct 
computations of opportunity costs instead? Perhaps the expected ben
efits of the current activity can be computed and compared with the 
expected benefits of what else one could be using one's attentional re
sources for at the time. However, these computations would themselves 
be cognitively costly. There is no end of alternative things one could be 
doing with the cognitive resources available, and even computations of 
the expected value to be derived from the most salient ones would be 
burdensome. This is, arguably, precisely why evolution has provided a 
sort of summary estimation of the opportunity costs, coded into a default 
value for mental effort—albeit one whose value can be adjusted by 

22 Perhaps some affective states can be “free-floating,” with chemical causes 
rather than resulting from anything resembling a cognitive appraisal process. 
This might be true of moods like cheerfulness and depression, for example. (In 
fact, however, even moods are thought by some to reflect more-generalized 
appraisals of the opportunities afforded by the current environment; Eldar, 
Rutledge, Dolan, & Niv, 2016; Eldar, Pessiglione & van Dillen, 2021). But that 
cannot be what is going on here, since evaluative learning of mental effort is 
targeted specifically at executive control mechanisms. 
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learning and varies with the circumstances.23 

It seems, then, that there are good reasons to think that cognitive 
effort depends on an analog-magnitude signal designating degrees of 
controlled processing. But why should we think that the signal in 
question is a model-free one, however? There are at least two reasons. 
The first is that it seems quite unlikely that all rats, mice, and birds 
should possess even a highly-simplified model of the operations of their 
own minds, or possess any concept-like representation of cognitive 
control as such. (After all, it remains controversial whether even mon
keys are capable of model-based metacognition, as we noted in Section 
2.) But the second reason is that no model-embedded representation of 
controlled processing needs to be present for the system to work as 
described. It can be built into the wiring and subsequent functioning of 
the affective system that the strength of the signal received as input from 
frontal systems represents the degree of engagement of controlled pro
cessing. Given the adaptive importance for an organism of making 
effective use of its limited cognitive-control abilities, it makes sense that 
this would evolve independently of, and prior to, any need to represent 
mental states as such. Moreover, given how widespread evaluations of 
cognitive effort are across mammalian (and probably avian) species, it is 
quite plausibly an evolutionary adaptation of just this sort. 

8. Conclusion and path forward 

The main goal of this paper has been to motivate a distinction be
tween model-based and model-free kinds of metacognition. The former 
is the familiar target of all (or almost all) classic investigations of met
acognitive capacities in humans, and is seemingly also the intended 
target of the search for metacognition in non-human animals. We have 
argued previously that metacognitive interpretations of most of the 
studies conducted with animals are unnecessary, and that the findings 
can be explained more simply in first-order terms (Carruthers, 2017; 
Carruthers & Williams, 2019; Ritchie & Carruthers, 2012). And we have 
recently presented positive evidence (summarized in Section 3) that at 
least some of the kinds of task employed with animals fail to engage 
model-based metacognitive capacities when used with humans (Nich
olson et al., 2019, 2021). But that leaves open the possibility of model- 
free forms of metacognition in animals (as well as in humans, of 
course).24 

Before making our positive case, we critiqued two possible candi
dates for model-free metacognition. In Section 4 we argued that the 
error signals involved in evaluative learning fail to have meta- 
representational contents. And in Section 5 we argued that the signals 
underlying implicit uncertainty-monitoring tasks represent object-level 
odds or likelihoods, rather than anything about the animal's own 
mind. But then in Section 6 we argued that forms of behavior that are an 
adaptive response to ignorance, on the one hand, and memory failure, 
on the other, are grounded in model-free concept-like signals with the 
content, unknown. And in Section 7 we argued that decisions to engage 
or not engage cognitive control are grounded in appraisals of an analog- 
magnitude signal representing the extent of that engagement. So we 

have proposed that there are at least two kinds of representation that 
have model-free metacognitive contents, representing ignorance and 
executive engagement respectively. (There may well be others, of 
course.) 

How might these latter proposals be tested empirically? How one 
tests a theory depends on the relevant contrasting theories, of course. In 
the case of metacognitive signals of executive engagement, there are 
already well-established models of decision making that incorporate 
cognitive effort (Inzlicht et al., 2018; Shenhav et al., 2016; Shenhav 
et al., 2017). The relevant contrasting proposal, here, is that the signals 
are model-based rather than model-free. It has already been established 
that rats are capable of evaluating cognitive control (Hosking et al., 
2016; Winstanley & Floresco, 2016), and one might think it implausible 
that rats should deploy any sort of model of the operations of their own 
minds, no matter how simplified. But the wider the extent of species that 
can be shown to be capable of evaluating cognitive effort, the more 
likely it will be that the signals in question are model-free ones. If this 
could be demonstrated for birds for example, or perhaps for vertebrates 
more broadly, then that would serve to make our hypothesis even more 
likely. 

More-direct tests of model-based executive control in rats (say) 
would depend on the details of the proposed structure of the model. Any 
model-based view will predict additional flexibility in responding and 
intervening, of course. But this can't be tested directly until the proposed 
components and parameters of the model are specified. So there is a 
challenge, here, for anyone wishing to claim some form of self- 
awareness or model-based metacognition in rats or other creatures: 
specify the nature of the creature's proposed mind-model, and the place 
of executive control within it, and then predictions for flexible self- 
directed interventions can be derived and tested. 

When discussing model-free signals of ignorance, in contrast, we 
considered two alternative theories. One is that curiosity depends just on 
the failure of any of the salient category-representations to reach crite
rion within a given time-frame, without there being any separate neural 
population that carries the information, unknown. The other is that there 
is such a neural population, but it represents, new rather than, unknown. 
In order to test the former, one might fit the two types of model against 
data from an object-classification task. Participants could be presented 
with a series of pictures of familiar and unfamiliar artifacts, classifying 
them into “kitchen implement,” “office implement,” or, “not known.” 
Reaction times and error rates could be collected, and the data fitted 
against models that employ three noisy competing accumulators or just 
two. And one might control for the suggestion that the unrecognized 
items are represented as new rather than not known by insuring that all of 
those items had been seen during warm-up trials. 

If modeling of this sort produced positive results, then that would 
support the existence of model-free metacognitive signals in humans and 
other animals. For of course many, many, creatures besides ourselves 
can respond adaptively to ignorance, and there is no reason to think that 
the mechanisms in humans should be any different in tasks of this sort. 
Admittedly, the discovery of model-free metacognition in nonhuman 
animals would likely fail to evoke the kinds of interest and excitement 
that have attached to claims of nascent (model-based) self-awareness in 
animals, or simple forms of self-consciousness in animals. Nor would its 
discovery in humans contribute to our understanding of the sort of self- 
awareness that we take to be so important about ourselves (Fleming, 
2021). But these discoveries would, all the same, make valuable addi
tions to our understanding of how human and animal minds function, 
and of the sorts of representations that underlie that functioning. 
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