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Abstract The goal of this paper is to explore forms of metacognition that have

rarely been discussed in the extensive psychological and philosophical literatures on

the topic. These would comprise explicit (as opposed to merely implicit or proce-

dural) instances of meta-representation of some set of mental states or processes in

oneself, but without those representations being embedded in anything remotely

resembling a theory of mind, and independent of deployment of any sort of concept-

like representation of the mental. Following a critique of some extant suggestions

made by Nicholas Shea, the paper argues that appraisals of the value of cognitive

effort involve the most plausible instances of this kind of metacognition.

Keywords Cognitive control � Effort � Error signal � Metacognition � Meta-

representation � Nonconceptual

1 Introduction

Metacognition is generally defined in the field as ‘‘thinking about thinking’’ (Flavell

1979; Nelson and Narens 1990; Dunlosky and Metcalfe 2009). Although this

definition as it stands might encompass thoughts about the thoughts of others

(otherwise known as ‘‘mentalizing’’, or ‘‘theory of mind’’), the term is commonly

understood as restricted to thoughts about one’s own thoughts and other mental

processes. That is how it will be used here—at least initially. (The definition will be

broadened shortly to include nonconceptual as well as thought-like representations

of one’s own mental states.)
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For the most part psychologists have focused on the determinants and accuracy of

a variety of explicitly-expressed metacognitive judgments (Dunlosky and Metcalfe

2009). These include judgments of learning, judgments of confidence, expressions

of feeling-of-knowing and tip-of-the-tongue states, and judgments about the sources

of one’s own knowledge. But psychologists have also investigated the development

of these capacities through childhood, as well as declines in those capacities in older

adulthood. Philosophers have rarely engaged with this literature directly. (Proust

2014, is one exception.) Instead, they have developed more-general theories of self-

awareness and self-knowledge, debating to what extent it is, or is not, distinctively

different in kind from our knowledge of the mental states of other people, for

example (Bilgrami 2006; Carruthers 2011; Fernández 2013; Cassam 2014; Byrne

2018).

There have also been extensive debates about the phylogenetic origins of self-

awareness. Some have claimed that the so-called uncertainty-monitoring and

memory-monitoring tasks employed with monkeys manifest at least simple forms of

metacognitive awareness of their own mental states, either as such, or in a way that

preadapts the representations in question to become components in full-blown self-

awareness in humans (Smith et al. 2003, 2014). Some critics have charged that these

findings can be explained in associative terms (Le Pelley 2012). Others have

appealed instead to first-order estimations of risk, or have claimed more generally

that the epistemic emotions in question (surprise, curiosity, uncertainty, feelings of

knowing, and so on) are likewise first-order (non-metacognitive) in nature, quite

different from the explicit judgments in humans that those feelings can ground

(Carruthers 2017; Nicholson et al. 2019). Yet others have described the epistemic

feelings in question as procedurally metacognitive because of the role they play in

modulating and controlling ongoing cognitive processes, while denying that meta-

representation of any sort is involved (Dokic 2012; Proust 2014).

This paper will introduce and evaluate a different possibility, exemplified in (and

hitherto only in) the work of Shea (2014). This is that there might be metacognitive

mental phenomena that are explicitly meta-representational in character, but which

neither represent mental states as such, nor in ways that display any form of nascent

self-awareness. These would be representational states whose correctness conditions

involve the existence and/or properties of some mental state or process in the agent,

but without being embedded in even a simple kind of understanding of the mental

status of the states referred to. They would be explicit nonconceptual meta-

representational states, referring to mental states in oneself.

I should stress that by explicit meta-representation, here and in what follows, I do

not mean meta-representations that are conscious. (The explicit/implicit contrast is

sometimes intended to line up with the conscious/unconscious one; but not here.)

Rather, I mean that it involves some form of meta-representational symbolic

structure or signal, as opposed to being built tacitly into the processing rules or

procedures employed. To illustrate, the information that seeing leads to knowing is

explicitly represented by the mentalizing system if the inference from, ‘‘John sees

that P’’ to, ‘‘John knows that P’’ is mediated by consulting the major premise,

‘‘Seeing leads to knowing.’’ In contrast, the information is implicitly represented if
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‘‘John sees that P’’ leads directly to ‘‘John knows that P’’ through a built-in domain-

specific inference rule having the form: ‘‘X sees that P ? X knows that P.’’

It should also be emphasized that the question of explicit nonconceptual
metacognition requires that the definition of ‘‘metacognition’’ be weakened. It will

need to encompass not just thoughts about one’s own mental states and processes

(which are presumably conceptual in nature) but potentially any kind of mental

symbol that has some of one’s own mental states among its correctness conditions,

no matter how ‘‘low level’’ the functional role of that symbol might otherwise be.

On this broadened understanding, provided that it is a representation of some sort,

and that it represents some mental state or process in oneself, then it can qualify as

metacognitive. Notice, however, that there are still many forms of self-monitoring

that are excluded by this broadened definition, including the representations that

participate in temperature regulation and balance regulation, and that monitor

glucose levels in the bloodstream. For these are representations of bodily states and

processes, not mental ones.

Section 2 will make some remarks about the idea of nonconceptual represen-

tation in general, and nonconceptual metacognition in particular. Sections 3 and 4

will then evaluate, and critique, Shea’s (2014) case for believing in the meta-

representational nature of the reward-prediction error signals that underlie

evaluative learning, as well as the motor-control prediction errors that modulate

action. (Note that both kinds of prediction error are extremely widespread in the

animal kingdom, and are found even in insects. No one would claim that they

constitute nascent forms of self-awareness.) Then Sects. 5 and 6 will discuss the

burgeoning recent literature on goal-directed thinking and mental effort in humans

and other animals, arguing that affective evaluations of so-called ‘‘controlled

processing’’ depend upon nonconceptual meta-representational signals.

2 Nonconceptual representation

Nonconceptual representations, as I here understand them, are those that are fine-

grained and continuous (or ‘‘analog’’), as opposed to marking a categorical

boundary of some sort (or ‘‘chunked’’). This way of drawing the distinction between

conceptual and nonconceptual representation is pretty standard in the philosophical

literature (Tye 2000; Bermúdez 2015; Beck 2019), and has been familiar at least

since Peacocke (1992). Thus, thinking that ripe tomatoes are red is a purely

conceptual representation, composed of the concepts RIPE, TOMATO, and RED. In

contrast, perceiving a roundish-shaped object whose surface is covered with some

specific shades of red (but without conceptualizing the object as a red tomato), is a

purely nonconceptual representation.

Note that representation as has traditionally been thought to require concepts

(Fodor 2015), in which case representing a mental state as such would require

deployment of some mental-state concept. Burge (2010) has argued for an important

exception to this principle, however. He thinks that there can be nonconceptual

representations of objects and objectivity as such in perception, in virtue of those

perceptual states being designed to track perceptual constancies. Because perception
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is designed to zero in on the same object irrespective of differences in orientation

and lighting, he argues that it represents that thing as an object in an objective

world. However, as we will see, there is nothing resembling a perceptual constancy

in the putative cases of nonconceptual metacognition that will concern us. Hence

these will (if genuine) involve representations of some of one’s own mental states,

but without representing them as mental.
There is a natural objection to the suggestion that nonconceptual representation

(at least in the cases that interest us) can be understood as the obverse of

representation as (where representing as requires deployment of concepts). This is

that animals surely represent items in the world in ways that aren’t purely analog in

nature. Yet many philosophers deny concepts to animals, insisting that concepts

must fully satisfy the ‘‘generality constraint’’ on concept-recombination (Evans

1982; Bermúdez 2003; Camp 2004). Rather than dispute the latter point, I prefer to

formulate the idea of representation as in terms of concept-like entities. An animal

can deploy a concept-like representation when it is capable of distinguishing

instances of different kinds from one another, and when the concept-like state serves

as a node for collecting information about instances of the kind. An animal might

distinguish flying predators from climbing predators, and distinguish both from

ground-based ones, for example; while storing separate bodies of information about

instances of the three kinds tied to the three representations in question (Seyfarth

et al. 1980). So representation as, as I understand it, at most requires concept-like
states that can be components of belief-like ones. We can then remain agnostic

about whether animals have genuine concepts and beliefs, while nevertheless

claiming that they can represent things as such.

The sorts of (putative) nonconceptual meta-representation that will concern us

are all instances of analog magnitude representation. The latter have been

extensively investigated in the domain of analog number representation, in both

humans and other animals (Dehaene 1997; Jordan et al. 2008; Izard et al. 2009). But

there are also distinct forms of analog magnitude representation for area, density,

length, and time (Odic 2018). What is distinctive of all analog magnitude

representations, however, is that they obey Weber’s law (Beck 2015). This states

that just-noticeable differences in a magnitude maintain a constant ratio as the

extent of the magnitude increases. Thus, an infant who can discriminate between

magnitudes of five items and ten items but not between five items and eight items,

will be able to notice the difference between ten items and twenty items, but not

between ten items and sixteen items.

Our question, then, is whether there is anything like this in the metacognitive

domain. Are there any explicit analog representations that have some of one’s own

mental states or one’s own mental processes among their correctness conditions, but

where these metacognitive states are not only nonconceptual in nature themselves,

but also function and perform their role without deployment of any concept-like

representation of the mental?
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3 Reward-prediction error signals

Shea (2014) argues at length that reward-prediction error signals have these

properties. They represent the difference between a predicted and an experienced

reward, and thereby serve to update the agent’s representation of the reward-value

of the entity or action in question. But these error signals are mostly buried deep in

subcortical regions of the brain, and are common to all creatures capable of

evaluative learning, including many invertebrates. No one would think of them as

involving a nascent form of self-awareness. Nevertheless, in Shea’s telling, they are

meta-representational in content, representing the magnitude of the difference

between a predicted and an experienced reward.

Shea (2014) seems to suggest that a meta-representational view is implicit in the

science of affective learning. Indeed, one might think that even the language used

by theorists in the field—error signal—suggests as much, implying that what is

signaled is that a representation (the content of a prediction) is erroneous or

mistaken. Here (roughly) is how evaluative learning works1: an expected value for a

given item or action is compared with the actual value experienced when that item is

consumed or the action is performed. When the two don’t match (the experienced

value is higher or lower than expected) a reward-prediction error signal is generated,

causing the stored value for things or actions of that kind to be updated by an

increment dictated by a learning-rule. Shea asserts that the content/correctness-

condition for the error signal d is that ‘‘the reward received for the last action was

higher/lower than the currently-represented expectation for that action’’ (p. 322).

Since the correctness-conditions include reference to both expectation and

representation, the error signal qualifies as meta-representational, Shea claims.2

It is not obvious that the nomenclature used—error signal—is anything more

than a theorist’s external gloss, however. Of course, we as theorists can see that an

expectation has been formed and then disconfirmed—that the expectation was

erroneous. But it doesn’t follow from this that the content of the error signal itself

represents that a representation is mistaken. Moreover, the standard way of stating

the content of the error signal—that it represents the difference between an expected

value and an experienced value—admits of two different readings, corresponding to

differences in the scope of ‘‘represents.’’ It can either mean (as Shea suggests): ‘‘The

error signal represents: [the difference between an expected value m and an

experienced value n].’’ Or it can mean: ‘‘Concerning an expected value m and an

experienced value n, the error signal represents: [the difference between m and n].’’

1 The simplified model presented here ignores top-down influences on evaluative learning, of the sort that

figure in nocebo and placebo effects. It also ignores the influence of background mood (Eldar et al. 2016),

and glosses over the fact that a value acquired from previous evaluative learning will be a weighted
average of the values experienced in the past, with more recent rewards being counted more heavily in

proportion to the learning rule.
2 Notice that Shea does not claim that the error signal is meta-representational on the grounds that it

represents something about an action (that is, a movement caused by an intention, hence a partly mental

entity). This is for good reason: the action-representations involved in evaluative learning are coded

entirely in sensorimotor format.
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On the latter reading, an error signal represents the difference between two values,
not two representations of value.

To elaborate on this alternative reading, here is a neutral (albeit still simplified)

description of what happens when an animal is engaged in evaluative learning. The

creature has coded in affective memory a stored value-magnitude (m) for items or

actions of a certain kind X, which we can represent as: VAL(Xs = m).3 (This might

either be an innate default setting of the evaluative system, or previously learned

through affective conditioning.) Here ‘‘VAL’’ stands for ‘‘value’’ or ‘‘goodness/

badness.’’ But it is intended only as a theorist’s tool, signifying something that is

implicit in the overall operations of the system in question (namely, that m is a

magnitude of value); ‘‘VAL’’ is not itself a representation in the mind of the

organism. (Compare the way in which people commonly use ‘‘BEL’’ to represent

the attitude of believing something. If one says that an organism has the attitude

BEL[p], the only representation attributed to the animal is the proposition p.) Thus,
the only representations actually involved are representations of a kind of thing or

action and a representation of a magnitude (of value).

Now, when the creature is about to encounter or enact a new instance of the kind,

the stored value gives rise to an expectation of value with the content: VAL(this
X = m); that is to say, it assumes that the value of the up-coming X will be the same

as the value of Xs generally. The creature then consumes the item or engages in the

action, and experiences a new value n, which is (let us suppose in this instance)

greater than m. We can represent this as: VAL(this X = n), where n equals

m ? d. The difference between m and n (that is, d, the error signal) is then used to

update the stored value of Xs in general in proportion to some learning rule a. So the

new stored value of Xs in general becomes: VAL(Xs = m ? d/a).
The simplest way to think of the content of the error signal is that it is an analog

magnitude representation with the content plus-d (or in cases where the experienced

value of an X is less than the stored value, minus-d). What it represents is a

difference in value between a specific instance of kind X and the value of Xs in

general (up to that time or as previously encountered, derived either from the

evolutionary history of the organism, or from previous evaluative learning, or both).

It is implicit in the functioning of the entire system that the plus or minus
components of the error signal represent the fact that the value of the current item is

greater, or lesser, than the value predicted on the basis of previous experience. And

the represented magnitude is then used to adjust the stored value for items of that

kind accordingly, as dictated by a learning rule. The only representations

participating in the entire learning process are a representation of a kind of item

or action, a representation of a specific item or action of that kind, representations of

3 Thus far Shea (2014) doesn’t disagree. For on p. 322 he writes that the correctness-condition for a

stored value (in my notation, m) is that, ‘‘[m] is accurate iff the average reward payoff that would be

achieved by repeatedly choosing [the thing or action] in the current environment is [m].’’ Note the

implication here, by the way, that the stored value for Xs is at least implicitly tensed. The system is

designed to track values in potentially changing circumstances. In fact, it can be helpful to think of

VAL(Xs = m) as a sort of generic representation, the evaluative equivalent of a generic belief like, ‘‘Birds
fly.’’ Although learned from previous experience, it gives rise to expectations of future Xs, somewhat as

the generic belief that birds fly would lead you to expect that the next bird you encounter will fly.
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value attaching to the kind and to the specific instance, and a representation of the

magnitude (and valence) of the difference between the two values. Nowhere do

expectations or experiences need to figure among the contents represented. Nothing

here needs to be meta-representational in nature.

Moreover, we can make perfectly good sense of the overall design of the

affective-learning system without needing to introduce anything meta-representa-

tional into the explanation. All animals live in a changing world. The intrinsic

(organism-relevant) values attaching to things often change over time. Fruit ripens

(becoming better to eat) and then decays (becoming worse). And the probabilities of

acquiring things of value can change with time, too. The likelihood of finding ripe

fruit on a particular kind of tree will vary with the seasons, for example. In the

simplest form of evaluative learning (known as ‘‘model free’’; Dickinson and

Balleine 2002; Dayan and Berridge 2014) these dimensions (outcome value and

likelihood) are not tracked independently of one another. Rather, the stored value

attaching to an action-in-a-context is incrementally shifted up or down (or left

untouched) with each experience of reward or failure to experience reward. Since

the world is not just change-ridden but also noisy, it would make no sense (it would

not be adaptive) for the stored value of an action-type to be fully altered with each

experience. (Although a particular sampled item of fruit may be rotten, most of the

remaining items might be ripe. And although a particular tree may as yet be devoid

of fruit, others might not be.) Nor would it make sense for the system to ignore an

unexpected reward or failure of reward, even though it might, indeed, be just noise.

The simplest, most efficient, way to track changing values in a changing but noisy

world is to make incremental shifts with each experience. Hence learning rules have

evolved, shifting the stored value up or down incrementally with each experience.

Another way to approach the same overall conclusion is to apply elements of the

‘‘varitel’’ semantic approach developed by Shea (2018) himself.4 This arguably

provides us with the most plausible account of representation in cognitive science.

According to Shea, in many cases what fixes the specific content of a representation

from among the disparate bodies of information that it carries, is the information

that played a causal role in stabilizing the operations of the system in question, and

ultimately the behavior of the organism. In general, he thinks causal stabilization

can be done by evolution, by learning, or by contributing to individual survival. In

the present case (the information carried by reward-prediction error signals), we

presumably need to look to evolution, since organisms don’t learn how to do

evaluative learning, nor do they acquire a capacity for it during their lifetimes.

4 Note that in his 2018 book Shea still explicitly endorses a meta-representational account of reward-

prediction error signals (albeit in passing), so it isn’t anachronistic to employ his later theory of

representational content to evaluate the earlier account. Note, too, that Shea’s varitel semantics includes

two basic kinds of representing relation. One is informational, with an internal symbol causally co-

varying (in the right circumstances and in the right way) with the represented property or thing. The other

is a form of structural mapping, with the relations among a set of internal symbols mirroring the relations

among a set of external entities. It is the first of these sorts or representing relation that is relevant here.

This is because error signals are singular in occurrence, rather than doing their work via the relations they

stand in to a set of similar signals.
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Rather, evaluative learning is among the basic learning mechanisms of almost all

living creatures.

Now, the error-signal plus-d carries the information that an expectation of value

had previously been formed while a greater value was subsequently experienced. So

it does carry metacognitive information. But it also carries information about the

difference in value between instances of a kind of thing that may have been

encountered previously in the environment and the value of the current item. Hence

we can ask (using Shea’s own semantic framework) which of these sorts of

information played a causal role in stabilizing the evaluative-learning system with

the properties and causal role that it now has. The answer is obvious. What matters

from the perspective of evolution is accurately tracking and updating the adaptive

value of items and actions in the environment. So what matters is generating an

accurate representation of the magnitude of the difference in value between the

current item or action and the values possessed by members of the kind that the

organism has previously encountered. In effect, the correctness condition for plus-d
concerns how much better this X is than Xs in general. This is a first-order

representation, without metacognitive content.

Shea (2014) attempts to develop a similar what-matters-in-evolution argument to

the one just employed, but draws the opposite (metacognitive) conclusion. He writes

(p. 332):

We are supposing that the system has been set up the way that it is, by

evolution or learning, in order to maximize overall average payoffs to the

agent. It is the correlational information carried by d about [the] difference

between represented expectation and feedback that contributes to achieving

this overall outcome. So that correlation explains why d is wired up to be

processed in the way that it is.[…] that is evidence that d is representing that

the reward was more/less than the represented expected value and telling

downstream processing to revise expected values accordingly […]. That

content partly concerns the content of another of the system’s representations

[the expected reward], and so is meta-representational.

But it is not the correlation between d and a difference between two mental

representations that explains why d is wired up to have the effects that it does.

Rather, what has stabilized the system is the correlation between d and the

difference in adaptive value between a kind of thing or action in general and the

value of the current item.5

Does the account of evaluative learning sketched here depend upon a

representational theory of value, however, of the sort defended by Cutter and Tye

5 Note that in the quoted passage Shea describes the error-signal d as telling the down-stream system to

revise its expected value for the thing in question. He intends this quite seriously. He thinks that the error

signal has imperative, or directive, content as well as indicative content. (That is, he thinks it is what

Millikan 1995, calls a ‘‘pushmi-pullyu’’ representation.) But this is ill-motivated. The error signal no

more has an imperative content than does visual perception of something unexpected. The perceptual

content serves to update one’s beliefs about the likelihood of events in the environment. But it doesn’t

direct one to update one’s beliefs.
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(2011) or Carruthers (2018)? Does it presuppose that stored reward-values and

experienced rewards are representations of the adaptive value of the associated

things and actions? A critic might suggest, instead, that reward-values are intrinsic

properties of the evaluative system that become associated with (and are evoked by)

types of thing and types of action, and that play a certain functional role in the life of

the organism (motivating pursuit and avoidance behavior, in particular). These

intrinsic properties would have to be magnitudes of some sort, and they would have

to allow for both positive and negative valences. But now the error signal, in

representing the difference between two such magnitudes, would be representing a

difference between two intrinsic mental properties. Hence the error signal would not

be meta-representational (since the reward-values in question aren’t representa-

tions, on this view), but it would be meta-mental (since reward-values are mental

properties).

Shea’s (2018) own semantic framework can again be deployed to show that

reward-states are, indeed, representations of adaptive value, however. To see this, it

will be helpful to recall the familiar distinction between so-called primary and

secondary reinforcers (and punishers). Primary reinforcers are things, properties, or

actions that have been fixed by evolution to motivate the actions that issue in them.

(Primary punishers are things, properties, or actions that have been fixed by

evolution to inhibit actions that cause them.) They include such things as eating

when hungry, drinking when thirsty, and pain. Secondary reinforcers and punishers,

in contrast, are things, properties, or actions that have acquired positive or negative

value through their association with, or capacity to predict, the occurrence of a

primary reinforcer or punisher. Thus, subsequent to evaluative learning that the

sound of a bell predicts food, an animal may work to make that bell sound for its

own sake, in the absence of any other reward. Likewise, following training an

animal might work to silence a bell that had previously been predictive of an electric

shock.

Mental states caused by primary reinforcers (positive rewards) carry information

about properties that contribute directly to survival, reproduction, or both. And the

causal role of positive rewards (motivating actions to obtain those reinforcers) has

been stabilized through evolution precisely because of the adaptive value of the

reinforcers themselves (food, drink, and so on). So they qualify as representations of

adaptive value. (Likewise, punishment states like pain are representations of

adaptive disvalue.) Mental states caused by secondary reinforcers and punishers

(which are also states of reward and punishment) carry information that is predictive

of primary reinforcers and punishers, and hence are likewise representations of

adaptive value and disvalue. Since this is so, our earlier argument stands: the

content of a reward-prediction error signal is just the magnitude of the difference

between two values. The representation is first-order, not metacognitive.6

6 It is worth noting that reward-value representations aren’t just representations of adaptive value and

disvalue; they are actually what Millikan (1995) calls ‘‘pushmi-pullyu’’ representations. For expectations

of value directly motivate actions designed to achieve or avoid the valued or disvalued things in question.

Moreover, note the difference between this case and the error signals themselves, which Shea (2014)
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4 Motor-prediction error signals

Shea’s (2014) claim that reward-prediction error signals are instances of noncon-

ceptual metacognition is unconvincing, then. But before concluding this aspect of

our discussion we should consider the plausibility of another claim he makes in that

paper (albeit in passing). This is that motor-prediction error signals are also meta-

representational in nature. For he might be right about this, even if wrong about the

error-signals resulting from reward prediction.

It is now well established that whenever a creature generates a motor instruction

to produce a planned movement, an efference copy of that instruction is used to

create a ‘‘forward model’’ of the sensory feedback that should be received if the

movement proceeds as planned (Wolpert and Kawato 1998; Wolpert and

Ghahramani 2000; Grush 2004; Jeannerod 2006). The forward model is compared

with the organism’s proprioceptive and visual experience as the action unfolds,

issuing in error-signals in cases of mismatch. This leads the organism to adjust the

motor instructions accordingly. This sort of control architecture is quite ancient, and

is employed even in dragonflies (Mischiati et al. 2015). So if the error-signals in

question could be shown to have meta-representational contents, then this would

surely qualify as an instance of explicit nonconceptual metacognition. Shea’s view

is that the error-signal represents the difference between a predicted (planned)

movement and the experienced movement, and so carries meta-representational

content about the (in)correctness of the organism’s expectations. But there is little

reason to accept this view.

Consider the simplest possible case. A young child has learned how to use her

arm to push wooden blocks away from her along a flat surface. (Perhaps she is

playing a game with a care-giver in which they exchange blocks with one another at

a constant rate.) In light of that experience, she now generates a motor instruction

similar to those used previously to push away an additional block. Suppose that the

force generated by this instruction is f. The instruction is also used to create a

forward model of the way things will look and feel as the block moves away from

her with the usual velocity v. But in fact, the block is heavier and/or more friction-

prone than previously, and the block only moves with velocity w. When matched

against the content of the forward model, this issues in an error-signal with the

content v – w = x, where x is then the difference in velocity between the two

velocity-magnitudes. As a result, the motor instructions are ramped upwards to

generate a force f ? g, where g is the estimated additional force needed to result in

velocity v. Here the error-signal represents the difference between two velocities:

one that was expected and one that was experienced. But that they were expected

and experienced doesn’t need to be (meta-)represented. For this is implicit in the

causal workings of the system itself. So there is no reason, here, to postulate explicit

meta-representation of mental states of oneself.

Footnote 6 continued

claims have imperative content. For it is not true that anything that causes a change in an organism (e.g. in

a stored value) is an imperative. Imperatives serve to cause / motivate action.

P. Carruthers

123

Author's personal copy



I conclude the discussion thus far, then, with the claim that reward-prediction and

motor-prediction error signals are not promising places to look for instances of

explicit nonconceptual metacognition. Shea (2014) deserves credit for having been

the first to introduce the latter idea into the literature, however. For there may well

be other regions of cognitive functioning where metacognitive signals of this sort

can genuinely be found. We begin to explore this suggestion next, approaching it

initially through the dual-systems literature. The suggestions made in Sect. 5,

although seemingly plausible, will fail to pan out. But they provide the foundation

for a related claim that will get vindicated in Sect. 6.

5 Deciding to think

A dual-systems framework has dominated psychological theorizing about the

architecture of human cognition for well over two decades (Evans and Over 1996;

Sloman 1996; Metcalfe and Mischel 1999; Stanovich 1999; Kahneman 2015). On

this view, the human mind is comprised of two systems, or types of system. System

1 comprises a set of systems that are fast, parallel, automatic, and effortless. These

issue swiftly in intuitions about correct answers when presented with reasoning

problems, as well as in fast emotional responses and ‘‘gut feelings’’ to situations

generally. System 2, in contrast, is slow, serial, controlled, and effortful. This is the

system employed when we stop to ‘‘think through’’ a solution to a problem, or

attempt to moderate our own emotional response to something.

The two systems are generally thought to be in competition with one another,

with occasional switches happening from System 1 intuitive mode to System 2

controlled processing or vice versa. Indeed, the dominant model of the relations

between the two systems is that cognition operates in System 1 mode by default, but

with System 2 remaining active in the background. System 2 monitors the outputs of

System 1, ready to intervene, inhibit those responses, and initiate controlled

processing when needed (Evans 2010; Evans and Stanovich 2013). Having

completed (or failed at) the task, people will then generally lapse back into

effort-free System 1 intuitive processing once again.

From a common-sense perspective what one does, in many cases of switching

from System 1 to System 2, is decide to stop and think, either about the answer to a

question or about the correct solution to a problem. People will explain how they

tackled a particular issue (in System 2 mode) by saying something like, ‘‘I thought

that it looked a bit tricky, so I decided to stop and think it through before

answering.’’ Some people are habitually thoughtful, of course, and might engage

System 2 processing as a matter of course, without any decision-making process.

(Psychologists refer to this personality trait as ‘‘need for cognition’’—see Cacioppo

and Petty 1982.) But in many cases one might detect that one is confronted with a

problem-type that one has failed at in the past, or one might intuit that the question
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being asked is somehow difficult or not straightforward. Here something resembling

a decision to switch to System 2 processing seemingly needs to be appealed to.7

Now, notice that a decision to stop and think about something is a decision with a

meta-representational content. What one is deciding to do is engage a specific sort

of executively-controlled cognitive processing. So the decision is about (and is

designed to cause) mental states or processes in oneself, whether represented as such

or nonconceptually.

Similar considerations might lead one to postulate a metacognitive decision in

the opposite direction, when people switch from task-focused processing to mind-

wandering (Christoff et al. 2016). For the competition between System 2 and

System 1 processing can be understood (at least in part) as a competition between

focused, controlled, uses of top-down attentional systems, on the one hand, and the

so-called saliency system, on the other (Corbetta and Shulman 2002; Corbetta et al.

2008). The latter continually monitors unattended perceptual and mnemonic

contents for relevance to current goals and values, causing a switch in the focus of

top-down attention when those contents are deemed important enough or relevant

enough. Some have argued that these switches of attentional focus result from

decisions to redirect attention (Carruthers 2015). Although the things that are

deemed to be relevant or irrelevant are the worldly contents of unattended percepts

or memories, still a decision to redirect attentional resources would seem to have at

least a nonconceptual metacognitive content. For the content of what one decides is

to switch that [the top-down attentional system] to a novel topic.

One can question the relevance for our discussion of these decisions to engage or

disengage from System 2 thinking. For they seem to be too ‘‘high level’’ to qualify

as instances of the kind of explicit nonconceptual metacognition that forms our

target of inquiry. Indeed, they are embedded in fully-conceptual forms of self-

awareness, as well as capacities to represent controlled thinking as such. The issue

is worth pursuing, however, because System 2 thinking is but one instance of

controlled cognitive processing, at the heart of which are capacities for top-down

attentional control (Shipstead et al. 2014; Tsukahara et al. 2020). And there is

evidence, not only that controlled attention is present in many birds and mammals,

at least (Mysore and Knudsen 2013; Sauce et al. 2014; Karten 2015), but that it is

also used in System-2-like forms of multistep planning (Taylor et al. 2010; von

Bayern et al. 2018; Gruber et al. 2019). So many animals, too, may take decisions to

engage or disengage from controlled cognitive processing—but presumably

represented nonconceptually, somehow.

In both of the above types of case, however (deciding to engage or disengage

from controlled processing) it is possible to doubt whether any explicit decision-like

event is really needed. In fact, there need be no event in such cases that involves a

symbol or symbolic structure of any sort with metacognitive content. These can,

7 Notice that in cases where one consciously and reflectively does something decision-like—such as

articulating in inner speech, ‘‘I will stop and think about this one’’—a decision has already been taken to

engage controlled processing. (In pausing to articulate those words one is already stopping to think.) The

inner-speech performance serves as an expression of that decision. My target in the discussion that

follows are the (putative) unconscious decisions that initiate controlled processing.
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rather, be instances of merely procedural metacognition (Proust 2014). This is

because competitive processes of the sort appealed to here can potentially be

explained through the use of leaky competitive accumulator (LCA) models of

decision making (Usher and McClelland 2001), as I will now explain.8

LCAs are now widely employed across cognitive science. For example, they

have been used to account for perceptually-based decision making, such as swiftly

deciding whether a presented stimulus is a word or a non-word (Dufau et al. 2012).

Neural activity representing WORD builds up over the course of milliseconds,

depending on how closely the stimulus matches the features of a familiar word,

modulated by ever-present spontaneous fluctuations in neural activity (neural noise;

Boly et al. 2007; Hesselmann et al. 2008). If this activity reaches criterion quickly

enough one responds with ‘‘word.’’ But at the same time the ‘‘non-word’’ response

is linked to a fixed value of activity in another population of neurons, from which

the activity among the ‘‘word’’ population subtracts, via inhibition. If this value

doesn’t drop below criterion quickly enough one answers ‘‘non-word.’’

According to such LCA models, the criterion-level for a given decision is fixed

by task demands and/or features of background motivation. For instance, if the

experimenter in a word/non-word task emphasizes accuracy, then the criterion-level

for a ‘‘word’’ response will be set high (with the criterion for ‘‘non-word’’ set

correspondingly low), with consequent effects on one’s reaction times. If the

experimenter stresses speed of responding, in contrast, then those criteria can be

shifted accordingly. But they will also be influenced by factors specific to the

individual (either personality-like traits or results of previous learning). The

important point for our purposes, however, is that the event that takes place when

the neural activity that represents WORD hits criterion level, resulting in initiation of

the action of saying ‘‘word’’, is not itself a symbol of any sort. While the ‘‘word’’

and ‘‘non-word’’ responses are explicitly represented (as are properties of the

stimulus), the decision between them is implicit in the operations of a leaky

competitive accumulator system.

If these models are applied to the ‘‘decision’’ to stop and think or the ‘‘decision’’

to divert attention from a task and begin mind-wandering, then we can offer non-

metacognitive explanations of the phenomena. We just have to suppose (as is

widely assumed already in cognitive science) that there is continual and active

competition between the two systems (System 1 versus System 2, or top-down

attention versus the saliency system), with criterion levels for ‘‘deciding’’ between

them set by contextual goals, individual personality, and previous learning.

A similar framework can then be applied to theoretical models of dual-system

decision-making that make use of the idea of the expected value of control (Shenhav

8 To be clear, I will not be claiming that LCA models actually succeed in providing the best explanation
of the phenomenon we call ‘‘deciding to think / stop thinking.’’ My claim, rather, is negative. It is that,

given the viability of such models and their popularity in psychology, it would be hard to establish—and

certainly controversial to claim—that there is an explicit metacognitive representation-type picked out by

the phrase ‘‘decision to engage controlled processing.’’ Note, too, that although LCA models are a specific

type of diffusion decision model (Forstmann et al. 2016), nothing of significance turns on this distinction

for our purposes.
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et al. 2016, 2017; Inzlicht et al. 2018). On this sort of account, people (and other

animals) decide how much mental effort/controlled processing to invest in a given

task by computing the expected value of doing so. That is, from previous experience

of tasks of that sort they weigh the expected benefits (the likelihood of success

combined with the value of a successful outcome) against the costs. People

generally experience controlled processing to be aversive, probably resulting from

the opportunity costs of not engaging those resources elsewhere, or of not allowing

attention to spread more broadly (Kurzban et al. 2013). In any given case, an

appraisal of that cost is weighed against the expected benefits to issue in a decision

to engage control (and by how much), or not.

Here too, as in our previous discussion, there might not be any symbol-involving

event that is a decision to engage cognitive control. That is to say, there need not be

an explicit representation of cognitive control at the ‘‘decision’’-point—not even a

nonconceptual one. Neural activity representing the different sources of information

(costs, likelihood, and outcome value) is integrated and builds, either reaching or

failing to reach criterion within a given time-frame. The result can be described as a

decision to engage cognitive control (or not), but that result need not employ any

symbolic structure or signal referring to control. When the criterion is met, control

is engaged. But that this is about engaging cognitive control can be left implicit in

the procedures involved.

I conclude that although common-sense might appeal to metacognitive decisions

when explaining why someone stops to think about a question before answering,

and although some in philosophy have employed similar language when explaining

what causes someone to shift into mind-wandering mode, such appeals aren’t

mandatory. And they may well fail to qualify as the best explanations of the

phenomena. Rather, any ‘‘decisions’’ involved in such cases can be left implicit in

the outcome of competition among leaky competitive accumulators of various sorts.

Nevertheless, as we will see next, embedded within such competitive processes are

ones that really do require reference to cognitive control—specifically, those

involved in evaluating the cost of control.

6 Mental effort

Many animals are known to integrate the costs of physical effort into their decision

making. They evaluate, not just the value of the end-state aimed at and the

likelihood of achieving it, but also the energetic costs of getting there. It is now

known that rats, in addition to humans, will evaluate the costs of mental effort, too,
with the evaluative networks involved being distinct from those that evaluate

physical effort (Winstanley and Floresco 2016; Inzlicht et al. 2018). The tasks that

have been employed with rats involve a decision between two different task options,

one requiring effortful focused attention to detect a briefly presented flash of light in

one of five locations for a larger reward, the other only requiring the animal to

detect an easily visible longer flash for a smaller reward. The animals have to trade-

off the size of the reward against the attentional effort involved. Furthermore, rats

can be conditioned to positively evaluate cognitive effort, at least within a particular
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task-type or domain (Hosking et al. 2016). So, too, can humans. Moreover, in

humans, at least, evaluative conditioning can issue in a sort of learned cognitive

industriousness that transfers to rather different types of cognitive-control task

(Eisenberger 1992). (Transfer of cognitive industriousness has not yet been tested in

rats.)

In light of these findings it seems highly likely that evaluations of cognitive effort

and controlled processing are widespread across mammalian species, at any rate.

But given the detailed neural-wiring homologies between mammals and birds

(Karten 2015), and given that some birds are known to be capable of controlled

cognitive processing when solving problems (Taylor et al. 2010; von Bayern et al.

2018; Gruber et al. 2019), it may well be the case that birds, too, will assign value

(more generally disvalue) to cognitive effort. I will now argue that such evaluations

must involve (at least) a nonconceptual form of explicit meta-representation.

As is familiar, controlled processing (maintaining focused attention, response

inhibition, and so on) is generally experienced as aversive. Thinking and focusing

can be hard work. But the negative value attaching to controlled processing isn’t

fixed, as we have just seen. Evaluative learning can change an animal’s appraisal of

the badness of expending cognitive effort in a given context. And then if a given

form of cognitive effort is evaluated as bad (or good), it must be represented. For

affective systems can only appraise and evaluate items that are explicitly

represented, as Delton and Sell (2014) argue.

All desires and emotions are about something, and result from prior affective

valuation (or ‘‘appraisal’’) of the thing, event, or property in question.9 In many

cases this means that concept-like representations are involved. If a monkey is to

experience alarm at the sight of a snake, then it must have a concept-like

representation of snakes. It must be capable of discriminating snakes from other

things, for example, even if it knows very little about them. And affective learning,

too, generally requires concept-like representations of the kinds in question. In order

to acquire and store a positive or negative valuation of Xs, a creature must be

capable of representing Xs in some fashion, and of distinguishing them from other

types of thing.

I suggest that all affective evaluation of a thing, property, or event requires

representations of that thing, property, or event. Indeed, this was implicit in our

discussion of reward-prediction errors in Sect. 3. The evaluative system stores a

value-magnitude associated with a type of thing or action, creates expectations for

the reward to be received from a given instance of that type, and subsequently

creates an evaluative experience tied to that thing or action when it is consumed or

performed, comparing it to the expected value. One can’t assign a value to Xs

without representing Xs in some fashion. As we will see, however, in order for

controlled processing, in particular, to be evaluated, it need not be represented as
such, nor even as a form of mentality. It can be represented as a nonconceptual that,

9 Note, however, that this isn’t to claim that all affective states in general are tied to a representation of

something. Moods, in particular, are affective states that are free-floating—or, perhaps better, that color

everything—rather than being tied to some thing or type of thing in particular.
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with degrees of magnitude of thatness tracking degrees of engagement of controlled

processing.

What is surely true is that if controlled processing/System 2 thinking is to be

negatively (or sometimes positively) evaluated, then it must be represented

somehow. But it need not be represented as such. Provided that the evaluative

systems receive a signal from executive controllers whenever the latter are engaged

(and with the strength of the signal varying with the extent of that engagement), then

it can be built into the default settings of the former that they should issue in

negative affect. But normal processes of evaluative learning can change these

settings, resulting in some forms of executive engagement in some contexts being

evaluated positively. The signal in question refers to controlled processing, but

without needing to be embedded in any concept-like representation of attention,

cognitive control, or any other sort of mentality.10

We can now apply Shea’s (2018) varitel semantics to further establish the point.

The signal received by evaluative systems when controlled cognitive processing is

engaged carries the information that it has been so engaged. Moreover, that it carries

such information explains how the dual-systems architecture has been stabilized by

evolution. For given that attention is a limited resource, sustained attention to a

thing or task carries opportunity costs, and should thus be negatively evaluated by

default (Kurzban et al. 2013). Hence it is generally adaptive to find controlled

cognitive processing to be effortful. And it is because the signal in question co-

varies with degrees of executive control that it plays the role that it does in

computing the expected value of control, and in modulating ongoing cognitive

processing.

Why should we think that the signal in question refers to cognitive control,

however (something mental), rather than to the underlying brain activity? Perhaps

what is signaled is just increased activity in regions of prefrontal cortex, in

particular. This suggestion might have made sense if the ‘‘ego depletion’’ model of

mental effort had been correct. On this view, mental effort tracks calorific depletion

in the brain (Masicampo and Baumeister 2008). But this view has now been

thoroughly de-bunked (Kurzban 2010; Hagger et al. 2016; Vadillo et al. 2016;

Inzlicht et al. 2018). Instead, it has been suggested that mental effort signals the

opportunity-cost of not directing attentional resources elsewhere (Kurzban et al.

2013; Kurzban 2016). If this is correct, then the best explanation of how the role of

effort-signals came to be stabilized in human and animal cognition needs to be

pitched at the cognitive level; and in consequence, what they represent belongs at

that level also.

10 Note that if different forms of executive engagement are to be evaluated separately, as I hint at here

(e.g. focused attention versus response inhibition), then the model I am proposing would require there to

be distinct signals sent to evaluative systems from each component kind of executive control. The default

settings for each of these signals would be negative, but evaluative learning might alter their values in

particular types of context independently of one another. Note, too, that there is unlikely to be anything

resembling perceptual constancies in this domain. (Mental effort doesn’t have to be identified across a

wide range of differing signals; a single signal, or a single signal for each type of effort, will do.) So one

cannot appeal to Burge’s (2010) framework to argue that despite the absence of mental-state concepts

mental effort is represented as such.

P. Carruthers

123

Author's personal copy



What reasons are there for thinking that the explicit signals designating degrees

of controlled processing are nonconceptual ones, however? There are at least two.

The first is that it seems quite unlikely that rats, mice, or birds should possess even a

highly-simplified model of the operations of their own minds, or possess any

concept-like representation of cognitive control as such. (After all, it remains

controversial whether even monkeys are capable of explicit metacognition, as we

noted in Sect. 1.) And indeed, hardly anyone in the field of comparative

metacognition has claimed that rats are capable of thinking about their own mental

processes. (However, see Kirk et al. 2014; and Templer et al. 2017.) But the second

reason is that no concept-like representation of controlled processing needs to be

present for the system to work as described. It can be built into the wiring and

subsequent functioning of the affective systems that when they receive that signal as

input, it represents the engagement of controlled processing. Given the adaptive

importance for an organism of making effective use of its limited cognitive-control

abilities, it makes sense that this would evolve independently of, and prior to, any

need to represent mental states as such. Moreover, given how widespread

evaluations of cognitive effort are across mammalian (and probably avian) species,

it is quite plausibly an evolutionary adaptation of just this sort.

We can conclude, then, that Shea (2014) is partly correct. The best place to look

for explicit nonconceptual metacognition is, indeed, in the evaluative domain. But

the most plausible example isn’t the reward-prediction error signal, as he claims.

Rather, it is in the evaluation of controlled processing undertaken by many creatures

besides ourselves. This requires evaluative systems to receive an analog-magnitude

signal referring to such processing (and whose strength co-varies with the extent of

that processing), but without such processing needing to be represented as such, and
without any concept-like representations of mental states or processes needing to be

deployed.

7 Conclusion

This paper has explored the question whether there are forms of explicit (not merely

procedural) reference to an agent’s own mental states or processes that occur

independently of any concept-like representation of those states or processes. I have

argued (against Shea 2014) that reward-prediction and motor-prediction error

signals do not qualify for this sort of explicit but nonconceptual metacognitive

status. But I have also argued that affective evaluation of controlled processing of

various kinds likely does qualify. In humans the negative evaluation inherent in

feelings of cognitive effort may generally be experienced as effortful thinking or

effortful attending. That is to say, humans can experience the effort of cognitive

control as such. But this isn’t needed for the dual-systems framework to function as

intended. In fact, in both humans and other many other creatures, engagement of

cognitive control may issue in an analog-magnitude signal transmitted to affective

systems. The meaning of the signal is fixed by evolution and implicit in the

operations of the overall network. It refers to cognitive control (and to the extent of

cognitive control) without that control being represented as such. But the upshot
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(negative valence caused by controlled processing) is correctly classified in humans,

at least, as effortful thinking or attending, and can thus be represented as such. I

suggest that the analog magnitude signal itself, however, should be seen as an

instance of explicit nonconceptual metacognition.
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